

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-12602C

Approximating Two-Stage Chance-Constrained Programs with Classical Probability Bounds

Bismark Singh, Jean-Paul Watson

Discrete Math & Optimization
Sandia National Laboratories

bsingh@sandia.gov

November 5, 2018

laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, a Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract

Contents

1 Motivation

2 Approximations with Classical Probability Bounds

3 Computational Results

4 Appendix

Chance Constraint Setting

Consider a linear Joint Chance Constraint:

$$P(x_t \leq y_t^\omega + w_t^\omega, \forall t \in T) \geq 1 - \varepsilon$$

Background:

- Two-stage stochastic program with recourse
- Possibly integer restrictions
- i.i.d. samples of uncertainty w_t^ω
- First stage decision, x_t , second-stage decision, y_t^ω

Challenges

- CC models are computationally intractable
- A known NP-hard problem
- Existing algorithms not scalable to practical sized problems
- Feasible region is non-convex

Contents

1 Motivation

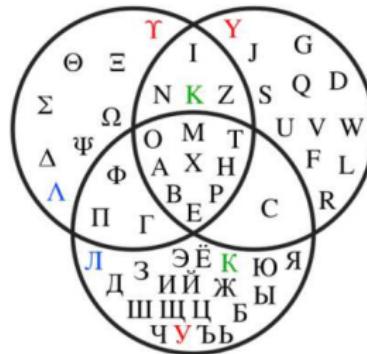
2 Approximations with Classical Probability Bounds

3 Computational Results

4 Appendix

Approximations with classical probability bounds

Satisfying a JCC is an intersection of events. Failing a JCC is a union of events.



We can rewrite the JCC as follows:

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \leq \varepsilon.$$

where F_t denotes the set of scenarios that we “fail”; i.e.,

$$F_t = \{\omega : x_t > y_t^\omega + w_t^\omega\}..$$

Approximations with Classical Probability Bounds

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \leq \varepsilon.$$

Consider an optimization model with a JCC with a maximization objective.

- Lower Bound (LB): Approximate the LHS using a quantity **larger** than $\mathbb{P}(\bigcup_{t \in T} F_t)$. Feasible region is **restricted**.
- Upper Bound (UB): Approximate the LHS using a quantity **smaller** than $\mathbb{P}(\bigcup_{t \in T} F_t)$. Feasible region is **enlarged**.

Approximations with Classical Probability Bounds

$$\mathbb{P}(\bigcup_{t \in T} F_t) = S_1 - S_2 + \cdots + (-1)^{|T|-1} S_T$$

where, $S_k = \mathbb{P}(\sum_{1 \leq i_1 < \cdots < i_k \leq |T|} F_{i_1} \cap \cdots \cap F_{i_k})$.

Bonferroni bounds:

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \leq S_1 \leftarrow \textcolor{red}{LB} \quad (1a)$$

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \geq S_1 - S_2 \leftarrow \textcolor{red}{UB}. \quad (1b)$$

Approximations with Classical Probability Bounds

$$\mathbb{P}(\bigcup_{t \in T} F_t) = S_1 - S_2 + \cdots + (-1)^{|T|-1} S_T$$

where, $S_k = \mathbb{P}(\sum_{1 \leq i_1 < \dots < i_k \leq |T|} F_{i_1} \cap \dots \cap F_{i_k})$.

Tighter bounds from Sathe et al. [1980]:

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \leq S_1 - \frac{2}{T} S_2 \leftarrow \text{LB} \quad (2a)$$

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \geq \frac{S_1 + 2S_2}{T^2} \leftarrow \text{UB}. \quad (2b)$$

Approximations with Classical Probability Bounds

$$\mathbb{P}(\bigcup_{t \in T} F_t) = S_1 - S_2 + \cdots (-1)^{|T|-1} S_T$$

where, $S_k = \mathbb{P}(\sum_{1 \leq i_1 < \dots < i_k \leq |T|} F_{i_1} \cap \dots \cap F_{i_k})$.

And more from Dawson and Sankoff [1967]:

$$\mathbb{P}\left(\bigcup_{t \in T} F_t\right) \geq \frac{S_1^2}{S_1 + 2S_2}. \leftarrow \textcolor{red}{UB} \quad (3a)$$

can be linearized for JCC $\leq \varepsilon$:

$$2\varepsilon S_2 \geq \alpha_n S_1 + \beta_n, n = 0, 1, \dots |N| - 1, \leftarrow \textcolor{red}{UB} \quad (3b)$$

Optimizing over JCCs

$u_t^\omega = 1$: failure at t in scenario ω

$v_{tt'}^\omega = 1$: failure at t and t' in scenario ω

$$x_t - y_t^\omega - w_t^\omega \leq M_t^\omega u_t^\omega, \forall t \in T, \omega \in \Omega$$

McCormick envelope
$$\begin{cases} v_{t,t'}^\omega \leq u_t^\omega, (t, t') \in T, t < t', \omega \in \Omega \\ v_{t,t'}^\omega \leq u_{t'}^\omega, \forall (t, t') \in T, t < t', \omega \in \Omega \\ v_{t,t'}^\omega \geq u_t^\omega + u_{t'}^\omega - 1, \forall (t, t') \in T, t < t', \omega \in \Omega \end{cases}$$

$$u_t^\omega = \{0, 1\}, \forall t \in T, v_{t,t'}^\omega = \{0, 1\}, \forall (t, t') \in T, \omega \in \Omega$$

Contents

1 Motivation

2 Approximations with Classical Probability Bounds

3 Computational Results

4 Appendix

A case study

$$\max_{x,y} \quad \sum_{t \in T} (R_t x_t - \mathbb{E}[B_t y_t^\omega]) \quad (4a)$$

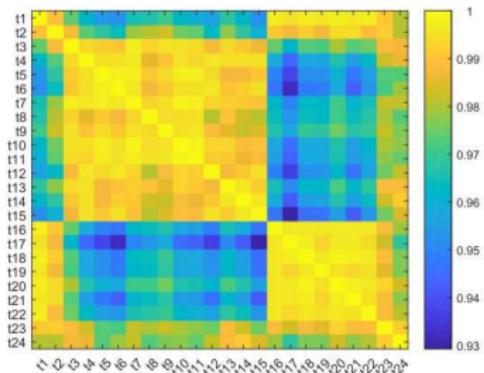
$$\text{s.t.} \quad \mathbb{P}(y_t^\omega + w_t^\omega \geq x_t, \forall t \in T) \geq 1 - \varepsilon \quad (4b)$$

$$0 \leq y_t^\omega \leq \Delta, \forall t \in T, \omega \in \Omega \quad (4c)$$

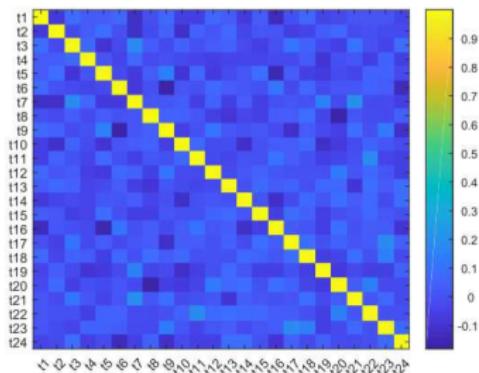
$$x_t \geq 0, \forall t \in T. \quad (4d)$$

Computational results

We compare two sampling procedures: (a) ARMA(2,2) process, and (b) normal random variables. Both samples have the same hourly means and variances.



(a)



(b)

Figure: Correlation structure of w_t

Computational results: ARMA (large correlation)

ε	Bounding constraint	Optimal objective value			Time (seconds)	Gap from optimal
		Lower bound	Upper bound	MIP gap		
0.01	(1a)	8,351.3	8,351.3	0%	2	3.3%
	(1b)	21,282.8	21,282.8	0%	12	59.4%
	(2a)	8,351.3	8,365.8	0.1%	2100	3.3%
	(2b)	8,339.6	10,682.1	21.9%	2100	19.2%
	(3a)	8,339.7	8,726.7	4.5%	2100	1.1%
	(3b)	8,688.9	8,702.1	0.2%	2100	0.8%
0.03	(1a)	8,374.6	8,374.6	0%	2	8.5%
	(1b)	22,353.2	22,353.2	0%	14	59.0%
	(2a)	8,339.6	8,755.4	4.7%	2100	8.9%
	(2b)	8,339.6	13,321.2	37.4%	2100	31.3%
	(3a)	9,137.3	9,311.4	1.9%	2100	1.7 %
	(3b)	9,074.4	9,252.2	1.9%	2100	1.1%

Table: Tightest lower and upper bounds for $\varepsilon = 0.01$ are 8,351.3 and 8,702.1; true optimal value is 8,634.1

Tightest lower and upper bounds for $\varepsilon = 0.03$ are 8,374.6 and 9,252.2; true optimal value is 9,154.9

Computational results: Gaussian (weak correlation)

ε	Bounding constraint	Optimal objective value			Time (seconds)	Gap from optimal
		Lower bound	Upper bound	MIP gap		
0.01	(1a)	9,100.8	9,100.8	0%	1	2.7%
	(1b)	21,606.6	21,606.6	0%	18	56.7%
	(2a)	9,102.08	9,113.3	0.1%	2100	2.7%
	(2b)	9092.3	11,365.5	20%	2100	17.7%
	(3a)	9,434.3	9,486.3	0.5%	2100	1.4%
	(3b)	9,421.5	9,452.3	0.3%	2100	1.1%
0.03	(1a)	9,124.3	9,124.3	0%	2	7.7%
	(1b)	22,762.1	22,762.1	0%	21	56.6%
	(2a)	9,124.8	9,198.4	0.8%	2100	7.7%
	(2b)	9,092.3	13,907.6	34.9%	2100	28.9%
	(3a)	9,092.3	10,062.6	9.6%	2100	1.8%
	(3b)	9,092.3	10,004.8	9.1%	2100	1.2%

Table: Tightest lower and upper bounds for $\varepsilon = 0.01$ are 9,100.8 and 9,449.9; true optimal value is 9,353.2

Tightest lower and upper bounds for $\varepsilon = 0.03$ are 9,124.3 and 10,004.8; true optimal value is 9,884.0

Computational results

- Bonferroni lower bound and Dawson & Sankoff upper bound consistently perform better than others
- Weaker correlation in uncertainty leads to easier-to-solve models
- MIQCP formulation of Dawson & Sankoff bound is challenging

Contents

1 Motivation

2 Approximations with Classical Probability Bounds

3 Computational Results

4 Appendix

Possible reasons for long computation time of naive solve

- No extended variable formulation above
- Big M
- Less reliable regime, more combinations to choose from

Computational results: ARMA (large correlation) with 500 scenarios

ε	Bounding constraint	Optimal objective value			Time (seconds)	Gap from optimal
		Lower bound	Upper bound	MIP gap		
0.01	(1a)	8,453.4	8,453.4	0%	1	2.9%
	(1b)	21,582.9	21,582.9	0%	129	59.7%
	(2a)	8,701.0	8,701.0	0%	1717	0%
	(2b)	10,462.7	11,318.4	7.5%	2100	23.1%
	(3a)	8,348.9	40,116.9	79.2%	2100	78.3%
	(3b)	8,348.9	8,772.9	4.8%	2100	0.8%
0.03	(1a)	8,542.5	8,542.5	0%	3	7.3%
	(1b)	22,570.6	22,570.6	0%	175	59.2%
	(2a)	8,348.9	9,396.1	11.1%	2100	9.4%
	(2b)	8,348.9	15,127.8	44.8%	2100	39.1%
	(3a)	8,348.9	41,151.4	79.8%	2100	77.6 %
	(3b)	8,348.9	9,352.9	10.7%	2100	1.5%

Table: Tightest lower and upper bounds for $\varepsilon = 0.01$ are 8,701.0 and 8,772.9; true optimal value is 8,701.0

Tightest lower and upper bounds for $\varepsilon = 0.03$ are 8,542.5 and 9,352.9; true optimal value is 9,211.3

Computational results: Gaussian (weak correlation) with 500 scenarios

ε	Bounding constraint	Optimal objective value			Time (seconds)	Gap from optimal
		Lower bound	Upper bound	MIP gap		
0.01	(1a)	9,005.1	9,005.1	0%	1	3.7%
	(1b)	21,503.7	21,503.7	0%	75	56.5%
	(2a)	8866.9	8,889.3	1.3%	2100	5.1%
	(2b)	8,866.9	11,071.9	19.9%	2100	15.6%
	(3a)	8,866.9	40,126.1	77.9%	2100	76.7%
	(3b)	9,343.6	9,390.3	0.5%	2100	0.5%
0.03	(1a)	9,148.2	9,148.2	0%	3	7.4%
	(1b)	22,565.4	22,565.4	0%	46	56.2%
	(2a)	8,866.9	9,315.3	4.8%	2100	10.2%
	(2b)	8,866.9	13,711.9	35.3%	2100	27.9%
	(3a)	8,866.9	41,187.8	78.5%	2100	76.0 %
	(3b)	8,866.9	9,990.9	11.2%	2100	1.2%

Table: Tightest lower and upper bounds for $\varepsilon = 0.01$ are 9,005.1 and 9,390.3; true optimal value is 9,346.4

Tightest lower and upper bounds for $\varepsilon = 0.03$ are 9,148.2 and 9,990.9; true optimal value is 9,874.1

Acknowledgements

Sandia
National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) program.