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Chance Constraint Setting

Consider a linear Joint Chance Constraint:
Pxt <yl +wgVteT)>1-c¢

Background:

@ Two-stage stochastic program with recourse

Possibly integer restrictions

i.i.d. samples of uncertainty w;’

First stage decision, x;, second-stage decision, y;’
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Challenges

CC models are computationally intractable
A known NP-hard problem
Existing algorithms not scalable to practical sized problems

Feasible region is non-convex
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Approximations with classical probability bounds

Satisfying a JCC is an intersection of events. Failing a JCC is a union of
events.

We can rewrite the JCC as follows:

P(|JF)<e.

teT

where F; denotes the set of scenarios that we “fail”; i.e.,
Fe ={w:x >yl +wl}.
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Approximations with Classical Probability Bounds

P(|JFe)<e.

teT
Consider an optimization model with a JCC with a maximization objective.
e Lower Bound (LB): Approximate the LHS using a quantity larger
than P(J,c 1 Ft). Feasible region is restricted.

o Upper Bound (UB): Approximate the LHS using a quantity smaller
than P(J,c 7 Ft). Feasible region is enlarged.
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Approximations with Classical Probability Bounds

P(Uier Ft) =51 — S+ -+ (-1)ITI-15
where, S, = P(Zlﬁi1<--~<ik§|T| Fin---NF,).

Bonferroni bounds:

P(|JR)< Si«tLB (1a)
teT

P(|JF)> S+« uB. (1b)
teT )
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Approximations with Classical Probability Bounds

P(UteT Ft) =51 —

So+ - (_1)|T|—15T

where, Sk =P 1< <. cijocir Fin N+ N F).

Tighter bounds from Sathe et al. [1980]:

P(|JFR)< Si—2S+« LB
teT

p(|JF)> 2222, yp,

T2

(2a)

(2b)
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Approximations with Classical Probability Bounds

P(Uier Fe) = S1— S +---(-1)IT"1S7
where, S, = P(leil<---<ik§|T| Fyn---NF).

And more from Dawson and Sankoff [1967]:

512
P ) 2 —= B
(Y )2 g e U (3a)
teT
can be linearized for JCC < ¢:
2655 > apS1 + fn,n=0,1,...|N| - 1,+ UB (3b) |
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Optimizing over JCCs

uy = 1: failure at t in scenario w
v¥, = 1: failure at t and t’ in scenario w

tt =
xe —yP —wy <MZug Vte T,we
vig Suf, (L) e T t<twel
McCormick envelope { vi,, < ug,V(t,t') € T, t <t ,weQ
VP U +ug —1LY(t ) e T, t<thwe

uf ={0,1},Vt € T, v{y = {0,1},V(t, t')e,we
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max > (Rexe — E[Beyy]) (4a)

Y teT

st. Pl 4+wd>x,VteT)>1—¢ (4b)
0<y/!<AVte T, we (4c)
x> 0,VteT. (4d)
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Computational results

We compare two sampling procedures: (a) ARMA(2,2) process, and (b)
normal random variables. Both samples have the same hourly means and
variances.

Figure: Correlation structure of w;
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Computational results: ARMA (large correlation)

Bounding Optimal objective value Time Gap
e constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (1a) 8,351.3 8,351.3 0% 2 3.3%
(1b) 21,282.8 21,282.8 0% 12 59.4%
(2a) 8,351.3 8,365 .8 0.1% 2100 3.3%
(2b) 8,339.6 10,682.1 21.9% 2100 19.2%
(3a) 8,339.7 8,726.7 4.5% 2100 1.1%
(3b) 8,688.9 8,702.1 0.2% 2100 0.8%
0.03 (1a) 8,374.6 8,374.6 0% 2 8.5%
(1b) 22,353.2 22,353.2 0% 14 59.0%
(2a) 8,339.6 8,755.4 4.7% 2100 8.9%
(2b) 8,339.6 13,321.2 37.4% 2100 31.3%
(3a) 9,137.3 9,311.4 1.9% 2100 1.7 %
(3b) 9,074.4 9,252.2 1.9% 2100 1.1%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 8,351.3 and 8,702.1;
true optimal value is 8,634.1

Tightest lower and upper bounds for € = 0.03 are 8,374.6 and 9,252.2; true
optimal value is 9,154.9
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Computational results: Gaussian (weak correlation)

Bounding Optimal objective value Time Gap
e constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (1a) 9,100.8 9,100.8 0% 1 2.7%
(1b) 21,606.6 21,606.6 0% 18 56.7%
(2a) 9,102.08 9,113.3 0.1% 2100 2.7%
(2b) 9092.3 11,365.5 20% 2100 17.7%
(3a) 9,434.3 9,486.3 0.5% 2100 1.4%
(3b) 9,421.5 9,452.3 0.3% 2100 1.1%
0.03 (1a) 9,124.3 9,124.3 0% 2 7.7%
(1b) 22,762.1 22,762.1 0% 21 56.6%
(2a) 9,124.8 9,198.4 0.8% 2100 7.7%
(2b) 9,092.3 13,907.6 34.9% 2100 28.9%
(3a) 9,092.3 10,062.6 9.6% 2100 1.8%
(3b) 9,092.3 10,004.8 9.1% 2100 1.2%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 9,100.8 and 9,449.9;
true optimal value is 9,353.2

Tightest lower and upper bounds for € = 0.03 are 9,124.3 and 10,004.8; true
optimal value is 9,884.0
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Computational results

@ Bonferroni lower bound and Dawson & Sankoff upper bound
consistently perform better than others

@ Weaker correlation in uncertainty leads to easier-to-solve models

e MIQCP formulation of Dawson & Sankoff bound is challenging

Singh, Watson (Sandia) Chance-Constrained Optimization November 5, 2018 17 /22



© Appendix

Singh, Watson (Sandia) Chance-Constrained Optimization November 5, 2018



Possible reasons for long computation time of naive solve

@ No extended variable formulation above
e Big M
@ Less reliable regime, more combinations to choose from
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Computational results: ARMA (large correlation) with 500

scenarios

Bounding Optimal objective value Time Gap
5 constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (1a) 8,453.4 8,453.4 0% 1 2.9%
(1b) 21,582.9 21,582.9 0% 129 59.7%
(2a) 8,701.0 8,701.0 0% 1717 0%
(2b) 10,462.7 11,318.4 7.5% 2100 23.1%
(3a) 8,348.9 40,116.9 79.2% 2100 78.3%
(3b) 8,348.9 8,772.9 4.8% 2100 0.8%
0.03 (1a) 8,542.5 8,542.5 0% 3 7.3%
(1b) 22,570.6 22,570.6 0% 175 59.2%
(2a) 8,348.9 9,396.1 11.1% 2100 9.4%
(2b) 8,348.9 15,127.8 44.8% 2100 39.1%
(3a) 8,348.9 41,151.4 79.8% 2100 77.6 %
(3b) 8,348.9 9,352.9 10.7% 2100 1.5%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 8,701.0 and 8,772.9;
true optimal value is 8,701.0

Tightest lower and upper bounds for € = 0.03 are 8,542.5 and 9,352.9; true
optimal value is 9,211.3
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Computational results: Gaussian (weak correlation) with

500 scenarios

Bounding Optimal objective value Time Gap
5 constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (1a) 9,005.1 9,005.1 0% 1 3.7%
(1b) 21,503.7 21,503.7 0% 75 56.5%
(2a) 8866.9 8,889.3 1.3% 2100 5.1%
(2b) 8,866.9 11,071.9 19.9% 2100 15.6%
(3a) 8,866.9 40,126.1 77.9% 2100 76.7%
(3b) 9,343.6 9,390.3 0.5% 2100 0.5%
0.03 (1a) 9,148.2 9,148.2 0% 3 7.4%
(1b) 22,565.4 22,565.4 0% 46 56.2%
(2a) 8,866.9 9,315.3 4.8% 2100 10.2%
(2b) 8,866.9 13,711.9 35.3% 2100 27.9%
(3a) 8,866.9 41,187.8 78.5% 2100 76.0 %
(3b) 8,866.9 9,990.9 11.2% 2100 1.2%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 9,005.1 and 9,390.3;
true optimal value is 9,346.4
Tightest lower and upper bounds for ¢ = 0.03 are 9,148.2 and 9,990.9; true
optimal value is 9,874.1
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