
Approximating Two-Stage Chance-Constrained
Programs with Classical Probability Bounds

Bismark Singh, Jean-Paul Watson

Discrete Math & Optimization
Sandia National Laboratories

bsingh@sandia.gov

November 5, 2018

Singh, Watson (Sandia) Chance-Constrained Optimization November 5, 2018 1 /22

SAND2018-12602C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Contents

Motivation

Singh, Watson (Sandia) Chance-Constrained Optimization November 5, 2018 2 / 22



Chance Constraint Setting

Consider a linear Joint Chance Constraint:

P(xt < )4‘' in4" E T) > 1 -

Background:

o Two-stage stochastic program with recourse

o Possibly integer restrictions

o i.i.d. samples of uncertainty 1/4'

o First stage decision, xt, second-stage decision, ytw
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Challenges

o CC models are computationally intractable

o A known NP-hard problem

o Existing algorithms not scalable to practical sized problems

o Feasible region is non-convex
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Approximations with classical probability bounds

Satisfying a JCC is an intersection of events. Failing a JCC is a union of
events.

We can rewrite the JCC as follows:

P(U Ft) .
reT

where Ft denotes the set of scenarios that we "fail"; i.e.,
Ft = fw : xt > 34' +
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Approximations with Classical Probability Bounds

7( U Ft) E.
tET

Consider an optimization model with a JCC with a maximization objective.

• Lower Bound (LB): Approximate the LHS using a quantity larger
than IF(UtET Ft). Feasible region is restricted.

o Upper Bound (UB): Approximate the LHS using a quantity smaller

than P(U te 7- Ft). Feasible region is enlarged.
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Approximations with Classical Probability Bounds

PRIG 7- Ft) = Sl — S2 + 
. . . (-1)17-1-1-ST

where, Sk =P(Ei<h<•••<ik<ITI F;1 n • • • n Fjk ).

Bonferroni bounds:

P( U Ft)

tE T

P(U Ft) > — S2 UB.
teT

<— LB

(1b)
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Approximations with Classical Probability Bounds

NUtET Ft) = 51 - 52 
(_1)17-1-1ST

where, Sk =- NE1<i1<---<ik<17-1 Fn • n Fik).

Tighter bounds from Sathe et al. [1980]:

111( U Ft)
teT

P( U Ft)
tEr

— 12--52 <— LB

+2S2
+— UB.

T2

(2a)

(2b)
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Approximations with Classical Probability Bounds

P(UtET Ft) = S1 — 52 + • • • (-1)17-1-1ST
where, Sk P(E1<h<---<ik<17-1 n • • • n Fik).

And more from Dawson and Sankoff [1967]:

2

IP( U Ft) > UB
— S1+2S2 teT

can be linearized for JCC < E:

2E S2 > a nS1 ± 13n, n = 0,1, • • • IN1 — 1, UB

(3a)

(3b)
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Optimizing over JCCs

ut̀"' = 1: failure at t in scenario w

vw, = 1: failure at t and t' in scenario wtt

xt — .),'" — 144' < Wilt̀ ',Vt E T, co E Si

/ 

t4',„ < ut̀', (t , e) E T, t < e, co E Q
McCormick envelope t4'',, < u‘t°,,V(t, e) E T, t < e, w E Q

1,4',t, > tit° + Lit,, — 1, v(t, e) E T, t < e, co E Q
u`f = {0, 1}, Vt E T, t4J,t, = {0, 1},V(t, 0 E, w E Q
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A case study

E (Rtxt - E[Btm)rnax (4a)
tET

s.t. LP(ycij > xt,et E T) > 1 — e (4b)

0 < < Vt E T, e (4c)

xt > 0, Vt E T. (4d)
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Computational results

We compare two sampling procedures: (a) ARMA(2,2) process, and (b)
normal random variables. Both samples have the same hourly means and
variances.
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Computational results: ARMA (large correlation)

e
Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (la) 8,351.3 8,351.3 0% 2 3.3%
(lb) 21,282.8 21,282.8 0% 12 59.4%
(2a) 8,351.3 8,365 .8 0.1% 2100 3.3%
(2b) 8,339.6 10,682.1 21.9% 2100 19.2%
(3a) 8,339.7 8,726.7 4.5% 2100 1.1%
(3b) 8,688.9 8,702.1 0.2% 2100 0.8%

0.03 (la) 8,374.6 8,374.6 0% 2 8.5%
(lb) 22,353.2 22,353.2 0% 14 59.0%
(2a) 8,339.6 8,755.4 4.7% 2100 8.9%
(2b) 8,339.6 13,321.2 37.4% 2100 31.3%
(3a) 9,137.3 9,311.4 1.9% 2100 1.7 %
(3b) 9,074.4 9,252.2 1.9% 2100 1.1%

Table: Tightest lower and upper bounds for e = 0.01 are 8,351.3 and 8,702.1;
true optimal value is 8,634.1
Tightest lower and upper bounds for E = 0.03 are 8,374.6 and 9,252.2; true
optimal value is 9,154.9
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Computational results: Gaussian (weak correlation)

e
Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (la) 9,100.8 9,100.8 0% 1 2.7%
(lb) 21,606.6 21,606.6 0% 18 56.7%
(2a) 9,102.08 9,113.3 0.1% 2100 2.7%
(2b) 9092.3 11,365.5 20% 2100 17.7%
(3a) 9,434.3 9,486.3 0.5% 2100 1.4%
(3b) 9,421.5 9,452.3 0.3% 2100 1.1%

0.03 (la) 9,124.3 9,124.3 0% 2 7.7%
(lb) 22,762.1 22,762.1 0% 21 56.6%
(2a) 9,124.8 9,198.4 0.8% 2100 7.7%
(2b) 9,092.3 13,907.6 34.9% 2100 28.9%
(3a) 9,092.3 10,062.6 9.6% 2100 1.8%
(3b) 9,092.3 10,004.8 9.1% 2100 1.2%

Table: Tightest lower and upper bounds for e = 0.01 are 9,100.8 and 9,449.9;
true optimal value is 9,353.2
Tightest lower and upper bounds for E = 0.03 are 9,124.3 and 10,004.8; true
optimal value is 9,884.0
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Computational results

o Bonferroni lower bound and Dawson & Sankoff upper bound
consistently perform better than others

✓ Weaker correlation in uncertainty leads to easier-to-solve models

o MIQCP formulation of Dawson & Sankoff bound is challenging
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Possible reasons for long computation time of naive solve

o No extended variable formulation above

o Big M

o Less reliable regime, more combinations to choose from
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Computational results: ARMA (large correlation) with 500
scenarios

E

Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (1a) 8,453.4 8,453.4 0% 1 2.9%
(lb) 21,582.9 21,582.9 0% 129 59.7%
(2a) 8,701.0 8,701.0 0% 1717 0%
(2b) 10,462.7 11,318.4 7.5% 2100 23.1%
(3a) 8,348.9 40,116.9 79.2% 2100 78.3%
(3b) 8,348.9 8,772.9 4.8% 2100 0.8%

0.03 (la) 8,542.5 8,542.5 0% 3 7.3%
(lb) 22,570.6 22,570.6 0% 175 59.2%
(2a) 8,348.9 9,396.1 11.1% 2100 9.4%
(2b) 8,348.9 15,127.8 44.8% 2100 39.1%
(3a) 8,348.9 41,151.4 79.8% 2100 77.6 %
(3b) 8,348.9 9,352.9 10.7% 2100 1.5%

Table: Tightest lower and upper bounds for E = 0.01 are 8,701.0 and 8,772.9;
true optimal value is 8,701.0
Tightest lower and upper bounds for E = 0.03 are 8,542.5 and 9,352.9; true
optimal value is 9,211.3
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Computational results: Gaussian (weak correlation) with
500 scenarios

E

Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (1a) 9,005.1 9,005.1 0% 1 3.7%
(lb) 21,503.7 21,503.7 0% 75 56.5%
(2a) 8866.9 8,889.3 1.3% 2100 5.1%
(2b) 8,866.9 11,071.9 19.9% 2100 15.6%
(3a) 8,866.9 40,126.1 77.9% 2100 76.7%
(3b) 9,343.6 9,390.3 0.5% 2100 0.5%

0.03 (la) 9,148.2 9,148.2 0% 3 7.4%
(lb) 22,565.4 22,565.4 0% 46 56.2%
(2a) 8,866.9 9,315.3 4.8% 2100 10.2%
(2b) 8,866.9 13,711.9 35.3% 2100 27.9%
(3a) 8,866.9 41,187.8 78.5% 2100 76.0 %
(3b) 8,866.9 9,990.9 11.2% 2100 1.2%

Table: Tightest lower and upper bounds for E = 0.01 are 9,005.1 and 9,390.3;
true optimal value is 9,346.4
Tightest lower and upper bounds for E = 0.03 are 9,148.2 and 9,990.9; true
optimal value is 9,874.1
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