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Modifying Control Algorithms Can Improve MIMO,
Multi-Shaker Testing

Multi-Shaker Vibration Tests
Multiple, small shakers & MIMO control

|

Mayes & Rohe, 2016 Daborn, 2017

= They observed that how you control,
estimate inputs matters quite a bit to
accuracy & input levels




To Implement New Control Techniques in the Lab,
31 Need to Generate Voltage Time Signals
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To Implement New Control Techniques in the Lab,
21 Need to Generate Voltage Time Signals
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Note: These techniques are not new — Smallwood
presented them in the late 1970’s

This is an exploration in what affects the resulting signals




Synthesizing Time Histories for Single &
s I Multiply-Correlated Inputs

1. Synthesis of Single Time Signal from APSD
= Random processes & realizations
= Tone and broadband signals

2. Generating Smooth, Long-Duration Signals
= Constant-Overlap and Add

= Effect of windowing on variance

= Window corrections

3. Synthesis of Multiply-Correlated Signals
= Matrix decomposition techniques
* Comparison of decomposition & random process techniques




6

Synthesizing Time Histories for Single &
Multiply-Correlated Inputs

_______________________1

I 1.

Synthesis of Single Time Signal from APSD
Random processes & realizations

= Tone and broadband signals
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2.

Generating Smooth, Long-Duration Signals
Constant-Overlap and Add

Effect of windowing on variance

Window corrections

Synthesis of Multiply-Correlated Signals
Matrix decomposition techniques
Comparison of decomposition & random process techniques




71 Synthesis of Single Time History from an APSD

" Premise:

= Have some desired signal auto-power spectral density (APSD)
= Want to generate a time history which has that desired APSD
= Can do in the time domain, but more efficient in frequency domain

* What’s the challenge?

= APSDs do not have phase, so cannot simply use IDFT

= Approach:

Convert the APSD to linear spectrum magnitude
Pick a random phase to generate a realization of a complex linear spectrum

3. Take the IDFT to generate the time history

Gyy = V(t)

v(t) = F1(X,)
X, =?

1. Linear Spectrum
Magnitude

|Xv| = 4/ Gyy/df

2. Random Phase

Y = U(0,2m)
Xy = |Xv|e]1'b

3. Inverse Fourier
Transform

v(t) = FH(Xy)




s I Synthesis of Single Time History from an APSD

= 2 Methods for Generating Random Phase for the Linear Spectrum:

= Method 1: Generate 2 Gaussian random variables, one for the real part, A, & one for
the imaginary part, B

" Method 2: Generate 1 Uniformly distributed random variable, 1, for the phase

= Do at each frequency line to generate the broadband linear spectrum
* New random variables for each frequency line

Method 1: Method 2:

1 . X = ejlnbk
Xi = akﬁ (Ag +jBy) k g




= Generate multiple pure-tone signals (realizations) with Method 1 and Method 2

Comparison of Random Process Methods

1
Xi = ak_z (Ag +jBy)

Method 1: Method 2:

Xk = akejlnbk

N

Time Histories (100 Realizations)
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= Random phase gives constant amplitude

= Random real & imaginary gives variations in the
amplitudes, normal distribution of signal values

= With sufficient averages, both provide desired variance




Synthesizing Time Histories for Single &
10 I Multiply-Correlated Inputs

1. Synthesis of Single Time Signal from APSD
= Random processes & realizations
= Tone and broadband signals

2. Generating Smooth, Long-Duration Signals
= Constant-Overlap and Add

= Effect of windowing on variance

= Window corrections

3. Synthesis of Multiply-Correlated Signals
= Matrix decomposition techniques
= Comparison of decomposition & random process techniques




1 | Generating Smooth, Long-Duration Signals

" Premise:

= Generally, sampling parameters result in a time history that is too short to be used for an entire
vibration test

= Need to generate multiple signals & put them together Tp =
What'’s the challenge?

= Each signal does not start & end at the same point — get a jump discontinuity
= Approach:

= Apply a window to smooth eacl
= Overlap & Add

Segment 1

Segment 2

T
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12 I Generating Smooth, Long-Duration Signals

= Constant-Overlap & Add (COLA)

1. Generate Multiple Signals 2. Window Each Signal to Taper 3. Add All Signals Together to
(Realizations) & Overlap in Time the Ends to Zero Form a Long, Single Signal
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13 1 Generating Smooth, Long-Duration Signals

= Typical overlap is not sufficient to achieve constant variance with random
signals

* The summed window amplitude is 1, but the composite random signal has
obvious variance deviations in the overlap region

Desired Reduced
Variance Variance
RMS =1.5 RMS = 1.08
I ' A [
~— Desired RMS
- ——— Standard Window RMS
=
5 =)
I o
o
g g
s 0° E Corrections:
j 8 1. Change the overlap (depends
% 2 4 & 8 10 1 on the window shape)
s 2. Change the window shape
Window: Hann with 50% Overlap | TIW ' '||I] '
_5 -
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Time [s]
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Generating Smooth, Long-Duration Signals

Composite Signal
IS)

W
~— Desired RMS
~—— Standard Window RMS

Windowed Signal Segments
. " Y
a 3

o

10 15
Time [s]

20

Determine how to change the window shape by looking
at the variance of the composite signal

Total signal = sum of two windowed signals:
Xtotal = WX1 T WX;

Variance of the total signal:

1 1 1
0% = Nthzoml = NZ(le +wxy)? = NZ(szlz + w?xZ + 2w?x,x,)

Variance of each individual signal is ¢

1
o2 =w?o¢ + wio§ + 2w? Nlexz = w26¢ + w?af

See that the sum of the window functions squared must equal one:
o2 =w?o¢ + wio§ = aé (Ww? + w?)

(Ww? + w?) = linsteadof w +w =1

w=w
Wr+wi=w+w=1
Xtotal = WX1 + WX,




15 I Generating Smooth, Long-Duration Signals

Example: Hann Window
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16 I Generating Smooth, Long-Duration Signals

Owverlapping Window

Moving RMS

Example: Tukey Window
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Synthesizing Time Histories for Single &
17 I Multiply-Correlated Inputs

1. Synthesis of Single Time Signal from APSD
= Random processes & realizations
= Tone and broadband signals

2. Generating Smooth, Long-Duration Signals
= Constant-Overlap and Add

= Effect of windowing on variance

= Window corrections

3. Synthesis of Multiply-Correlated Signals
= Matrix decomposition techniques

= Comparison of decomposition & random process techniques




18 I Synthesis of Multiply-Correlated Signals

= Premise:
* In MIMO problems, the inputs are often correlated
= Synthesized time signals must reflect this desired correlation, along with the amplitude

= What’s the challenge?
* How do you enforce correlation on multiple time signals?

SaaszvaH 5111 S%N

— + +H va —
S'U'U H SaaH SN]_ Ve SNN

3

Correlated Inputs




19 | Synthesis of Multiply-Correlated Signals

Y1
[Spp] b L], ) (P} =), rommp{X,} = [L]{¥} wemp v_il(t) -
[va] = LI" (VF F (Xv,i)
CPSD Matrix Decompose Generate Vector Multiply To Get IDFT To Time
to Linear Random Process Linear Spectra Histories

Start with desired voltage CPSD: S,,, = H*S,  H*"

Matrix Decomposition:
= Convert CPSD from power domain to linear domain (matrix square root)

= Cholesky Decomposition: [S,,,] = [L][L¥] (lower triangular matrix)
1

= Singular Value Decomposition: [S,,] = [U][S][V]¥ - [L] = [U][S]z[V]H

Vector Random Process:

= Vector of random variables (random phase or random real & imaginary parts), one for
each signal

Multiplying the [L] matrix by the vector random process generates a
realization of the multiply-correlated linear spectra, {X,}




20 I Synthesis of Multiply-Correlated Signals

= Matrix Decomposition method & random process method both affect the

resulting signals

= Example Problem:

= 4 signals, coherence of 0.25, phase of m /4 for all frequency lines. 100 averages
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Synthesis of Multiply-Correlated Signals

= Matrix Decomposition method & random process method both affect the

resulting signals

= Example Problem:

= 4 signals, coherence of 0.25, phase of m /4 for all frequency lines. 100 averages
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Synthesis of Multiply-Correlated Signals

= Matrix Decomposition method & random process method both affect the
resulting signals

= Example Problem:

= 4 signals, coherence of 0.25, phase of m /4 for all frequency lines. 100 averages
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= For multiple signals, matrix decomposition &
random process both affect resulting signals

= On average, signals match the desired APSD,
coherence and phase
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Conclusions:
2 I Generating multiply-correlated signals for MIMO testing

1.

Goal: Enable the Use of New MIMO Control Algorithms
for Multi-Shaker Vibration Testing

Synthesis of Single Time Signal from APSD

Not deterministic — use random sampling

One average, signals represent desired APSD

Random process matters — real & imaginary vs. phase

Generating Smooth, Long-Duration Signals

Used to concatenate multiple, short signals into longer signal for a test
COLA smooths the transitions

Changing to a square-root window function preserves variance

Synthesis of Multiply-Correlated Signals

Procedure is similar to single signals

Convert from power to linear space with a matrix decomposition (Cholesky or SVD)
Random process is now a vector with Nsignals terms

Type of decomposition and random process affects the resultant signals




Input signal synthesis for open-
loop multiple-input/multiple-
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2s | Backups: Synthesis of Multiply-Correlated Signals

Histograms: Tone Signals
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26 | Backups: Synthesis of Multiply-Correlated Signals
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