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Modifying Control Algorithms Can Improve MIMO,
2 Multi-Shaker Testing

Multi-Shaker Vibration Tests
Multiple, small shakers & MIMO control

Mayes & Rohe, 2016 Daborn, 2017

• They observed that how you control,
estimate inputs matters quite a bit to
accuracy & input levels



To Implement New Control Techniques in the Lab,
3 Need to Generate Voltage Time Signals

Measure FRF

Matrix

General Vibration Test Process

Estimate Inputs

to Achieve

Response CPSD

Synthesize Time

Histories from

Input CPSD

H = A/V S„ = II+ SaaH+H S„ —> v1(t),v2(t) ...

Send Voltage

Time Histories

to Shakers

Done Within Closed-

Loop Controller



To Implement New Control Techniques in the Lab,
4 Need to Generate Voltage Time Signals

Measure FRF

Matrix

General Vibration Test Process

New Algorithms

Estimate Inputs

to Achieve

Response CPSD

Do With MATLAB

Synthesize Time

Histories from

Input CPSD

Send Voltage

Time Histories

to Shakers

Arbitrary Source

Playback

Note: These techniques are not new — Smallwood
presented them in the late 1970's

This is an exploration in what affects the resulting signals



Synthesizing Time Histories for Single &
5 Multiply-Correlated Inputs

Synthesis of Single Time Signal from APSD

Random processes & realizations

Tone and broadband signals

Generating Smooth, Long-Duration Signals

Constant-Overlap and Add

Effect of windowing on variance

Window corrections

Synthesis of Multiply-Correlated Signals

Matrix decomposition techniques

Comparison of decomposition & random process techniques



1 Synthesizing Time Histories for Single &
6 Multiply-Correlated Inputs

i Synthesis of Single Time Signal from APSD
I Random processes & realizations
I Tone and broadband signals
L  

2. Generating Smooth, Long-Duration Signals

• Constant-Overlap and Add

• Effect of windowing on variance

• Window corrections

3. Synthesis of Multiply-Correlated Signals

• Matrix decomposition techniques

• Comparison of decomposition & random process techniques



7 Synthesis of Single Time History from an APSD

Premise:

Have some desired signal auto-power spectral density (APSD)

Want to generate a time history which has that desired APSD

Can do in the time domain, but more efficient in frequency domain

What's the challenge?

APSDs do not have phase, so cannot simply use IDFT

Approach:

1. Convert the APSD to linear spectrum magnitude

2. Pick a random phase to generate a realization of a complex linear spectrum

Take the IDFT to generate the time history

Gvv —> v(t)

1. Linear Spectrum

Magnitude

XI = V Gvvldf

2. Random Phase

lp = U(0,27)

Xv = lXviertP

v(t) = F-1(4)
Xv =?

3. Inverse Fourier

Transform

v(t) = F-1(4)



8 Synthesis of Single Time History from an APSD

2 Methods for Generating Random Phase for the Linear Spectrum:

Method 1: Generate 2 Gaussian random variables, one for the real part, A, & one for
the imaginary part, B

Method 2: Generate 1 Uniformly distributed random variable, V), for the phase

Do at each frequency line to generate the broadband linear spectrum

New random variables for each frequency line

Method 1:

1
Xk=ak 

1/2 
(Ak + iBk)

Method 2:

Xk = akeNk



9 Comparison of Random Process Methods

Generate multiple pure-tone signals (realizations) with Method 1 and Method 2

Method 1:

1
Xk=ak 

1/2 
(Ak iBk)

Time Histories (100 Realizations)

x105
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—Method 1(Re. + pm)

—Method 2(Phase)
8

6

rlJ 0
4

2

Method 2:

Xk = akeNk

Histogram of Signal Values

Method 1 (Re. + jimy

Method 2 (Phase)

Variance & Peak Values

Method Variance Peak

Method 1 1.100 3.67

Method 2 1.000 1.41

• Random phase gives constant amplitude
• Random real & imaginary gives variations in the
amplitudes, normal distribution of signal values
• With sufficient averages, both provide desired variance



Synthesizing Time Histories for Single &
io Multiply-Correlated Inputs

1. Synthesis of Single Time Signal from APSD

• Random processes & realizations

• Tone and broadband signals

I Generating Smooth, Long-Duration Signals
I Constant-Overlap and Add
I

Effect of windowing on variance
I

1  
Window corrections

3. Synthesis of Multiply-Correlated Signals

• Matrix decomposition techniques

• Comparison of decomposition & random process techniques



ii Generating Smooth, Long-Duration Signals

Premise:

Generally, sampling parameters result in a time history that is too short to be used for an entire
vibration test

Need to generate multiple signals & put them together

What's the challenge?

Each signal does not start & end at the same point — get a jump discontinuity

Approach:

Apply a window to smooth eacl

Overlap & Add
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12 Generating Smooth, Long-Duration Signals

Constant-Overlap & Add (COLA)

1. Generate Multiple Signals

(Realizations) & Overlap in Time
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13 Generating Smooth, Long-Duration Signals

Typical overlap is not sufficient to achieve constant variance with random
signals

The summed window amplitude is 1, but the composite random signal has
obvious variance deviations in the overlap region
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Corrections:
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14 Generating Smooth, Long-Duration Signals

r' —Standard Wndow RMS

LAALIAkil
5 10

Time [s]

15 20

Determine how to change the window shape by looking
at the variance of the composite signal

• Total signal = sum of two windowed signals:

Xtotal = WX1 WX2

• Variance of the total signal:
, 1 1 1= _v(w2x9 

+0- = —E4otal = —E(WX1+ wx2)2 i  1412 4 + 21412 X1X2)
N N N '

• Variance of each individual signal is 4:

6
2 = w24 w24 2w2

N 
x1x2 = w2 w2

• See that the sum of the window functions squared must equal one:
a2 = w24 w24 = agw2 w2)

(w2 w
2) 
= 1 instead of w + w = 1

Thus, the window functrions should be the square root of the native window:
1 0 = ViTv 1
1 1
1 W

2 ^ 
1/1/
2

+  = 1/1/ + IV = 1 I
i

1 Xtotal = 1/1)X1 + 1/1) X2 :
i 



15 Generating Smooth, Long-Duration Signals
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Example: Hann Window
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16  Generating Smooth, Long-Duration Signals

o
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• Modifying the window shape gives
desired signal variance
• Works for any window shape
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Synthesizing Time Histories for Single &
17 Multiply-Correlated Inputs

1. Synthesis of Single Time Signal from APSD

• Random processes & realizations

• Tone and broadband signals

2. Generating Smooth, Long-Duration Signals

• Constant-Overlap and Add

• Effect of windowing on variance

• Window corrections

I ISynthesis of Multiply-Correlated Signals
I I

Matrix decomposition techniques
I I

Comparison of decomposition & random process techniques
I   i



18 Synthesis of Multiply-Correlated Signals

Premise:

In MIMO problems, the inputs are often correlated

Synthesized time signals must reflect this desired correlation, along with the amplitude

What's the challenge? I
How do you enforce correlation on multiple time signals?

Saa = HS„HH

S„ = H+S.11+11

S11

„ — :

SN1

\

• • •

• • •

Correlated Inputs

S1N1SNN
1



19 Synthesis of Multiply-Correlated Signals

01
[S „] [L] , NJ} = 1P2 {Xi,} = [L]{lP} vi (t) =

[S„] = LLH 03 IT -1 (Xv,i)

CPSD Matrix Decompose Generate Vector Multiply To Get IDFT To Time

to Linear Random Process Linear Spectra Histories

Start with desired voltage CPSD: Svv = H+SaaH+H

Matrix Decomposition:

• Convert CPSD from power domain to linear domain (matrix square root)

• Cholesky Decomposition: [Svv] = [L] [LH] (lower triangular matrix)
1

- Singular Value Decomposition: [Svv] = [In [S] [V]ll [L] = [In [S]2 [VYI

Vector Random Process:

Vector of random variables (random phase or random real & imaginary parts), one for
each signal

Multiplying the [L] matrix by the vector random process generates a
realization of the multiply-correlated linear spectra, PG}



20 Synthesis of Multiply-Correlated Signals

Matrix Decomposition method & random process method both affect the
resulting signals

Example Problem:
4 signals, coherence of 0.25, phase of 7/4 for all frequency lines. 100 averages
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(single amplitude)
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21 Synthesis of Multiply-Correlated Signals

Matrix Decomposition method & random process method both affect the
resulting signals

Example Problem:
4 signals, coherence of 0.25, phase of 7/4 for all frequency lines. 100 averages
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22 Synthesis of Multiply-Correlated Signals

Matrix Decomposition method & random process method both affect the
resulting signals

Example Problem:
4 signals, coherence of 0.25, phase of 7/4 for all frequency lines. 100 averages

1

0 500

SVD, Re+jim

—Chol , e.xp(j40
— Specification

— SVD, Re

—Chol , expV.:11
I — Specification

• For multiple signals, matrix decomposition &
random process both affect resulting signals
• On average, signals match the desired APSD,
coherence and phase

1500 2000 2500

sy [Hz]



Conclusions:
23 Generating multiply-correlated signals for MIMO testing

Goal: Enable the Use of New MIMO Control Algorithms
for Multi-Shaker Vibration Testing

Synthesis of Single Time Signal from APSD

Not deterministic — use random sampling

One average, signals represent desired APSD

Random process matters — real & imaginary vs. phase

2. Generating Smooth, Long-Duration Signals

• Used to concatenate multiple, short signals into longer signal for a test

COLA smooths the transitions

Changing to a square-root window function preserves variance

Synthesis of Multiply-Correlated Signals

Procedure is similar to single signals

Convert from power to linear space with a matrix decomposition (Cholesky or SVD)

Random process is now a vector with Nsignals terms

Type of decomposition and random process affects the resultant signals



Input signal synthesis for open-
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25 Backups: Synthesis of Multiply-Correlated Signals
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26 Backups: Synthesis of Multiply-Correlated Signals
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