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Multiple InputVibration Testing — Just an Inverse Problem
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Multiple InputVibration Testing — Just an Inverse Problem

Truth Response
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Control Problem: Estimate Inputs to Achieve Response
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Multiple InputVibration Testing — Just an Inverse Problem

Truth Response

Control Problem: Estimate Inputs to Achieve Response
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s I Multiple Input Vibration Testing — Just an Inverse Problem

Truth Response

Control Problem: Estimate Inputs to Achieve Response
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s | Techniques Demonstrated with a Model of a Dynamic System
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71 Techniques Demonstrated with a Model of a Dynamic System

1. Condition Number of the FRF Matrix
* What affects condition number?
= How does condition number affect estimated inputs & responses?

2. Fixing Poorly Conditioned Systems — Regularization
= Tikhonov & Singular Value methods
= How can regularization can help or hurt?

3. Force Estimation Techniques
= What methods are available?
= How do they differ in terms of response and inputs?

Objective: Learn different MIMO techniques, apply
them to a dynamic system & understand how the
different techniques affect results




s I Techniques Demonstrated with a Model of a Dynamic System

_______________________1

I 1. Condition Number of the FRF Matrix I
= What affects condition number? I
= How does condition number affect estimated inputs & responses? |
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2. Fixing Poorly Conditioned Systems — Regularization
= Tikhonov & Singular Value methods
= How can regularization can help or hurt?

3. Force Estimation Techniques
= What methods are available?
= How do they differ in terms of response and inputs?




o I Condition Number of the FRF Matrix

= What affects condition number?

* How does condition number affect estimated inputs & responses?

Condition Number: H = USVH
Ratio of Largest/Smallest Singular Value
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Condition Number of the FRF Matrix

= What affects condition number?

Location of Inputs & Outputs (other cases in the paper)
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Condition Number of the FRF Matrix

= What affects condition number?
= Location of Inputs & Outputs

Condition Number
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= Location of Inputs has very strong
effect on condition number

= Redundant information = small
singular values

= Each input should excite modes in
a strong, different way

= Generally, fewer inputs/outputs
results in lower condition number,
but not universally true




12 I How does condition number affect estimated inputs & responses?

* |nputs are estimated as:
Ax=b->x=A%Db

= For MIMO vibration:
Saa = HSffHH 4 Sff = H+Saa H+H

= Errors in the estimates can come from noise or uncertainty on the target
response:

Ax=b+ e

= This noise can be amplified as it is propagated through the inverse of the FRF
matrix:

x=A"(b+ e)




13 1 How does condition number affect estimated inputs & responses?

= Example: Unit input loads, apply noise to

Truth response

= Estimate inputs with noisy response

dBinput = 10logy¢ (
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14 I Techniques Demonstrated with a Model of a Dynamic System

1. Condition Number of the FRF Matrix
= What affects condition number?
= How does condition number affect estimated inputs & responses?

_______________________ 1
3 Fixing Poorly Conditioned Systems — Regularization |
I . Tikhonov & Singular Value methods I
. How can regularization can help or hurt? I

3. Force Estimation Techniques
= What methods are available?
= How do they differ in terms of response and inputs?
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Fixing Poorly Conditioned Systems — Regularization

= Regularization is a numerical correction to the FRF matrix to
improve the conditioning to reduce errors in the estimates

= Example Problem:
= White noise inputs to plate system, bad input locations

* Methods:
Tikhonov: Singular Value:
= Various flavors Decompose FRF
= One type: H=USVH

AT = (ATA) 14T
At = (ATA + 22D~ 14T
Regularization value: A2
A Can be constant or
function of frequency

Change the smallest
singular values to be
larger or set them to zero
sy — 100sy
sy — 0

Regularization changes the FRF matrix, ideally by just
enough to improve numerics without changing the system
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Fixing Poorly Conditioned Systems — Regularization
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Regularization can reduce errors in
estimated inputs

Tikhonov & SVD both work, just
change FRF matrix differently




17 I Fixing Poorly Conditioned Systems — Regularization
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= Too little regularization does not change the
matrix enough to reduce noise propagation

= Too much regularization changes the form of
the matrix, introducing new errors
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1. Condition Number of the FRF Matrix
= What affects condition number?

= How does condition number affect estimated inputs & responses?

2. Fixing Poorly Conditioned Systems — Regularization
= Tikhonov & Singular Value methods
= How can regularization can help or hurt?

_______________________1

I 3. Force Estimation Techniques I
I = What methods are available? I
I . How do they differ in terms of response and inputs? 0

b i s i e s o




Force Estimation Techniques

= What techniques are available?

* How do they differ in terms of response and inputs?

Standard Method
Inputs estimated with
pseudo-inverse of the
FRF matrix applied to
the full target response
CPSD
Sfra = H+Saa,0H+H

Independent Drives
Estimate inputs to
achieve only APSDs of
target response
Gep1 = (HoH ) Ggqgp
Can then update the
target CPSD & estimate
non-independent inputs

Buzz Test
Replace the cross terms
in the target response
CPSD using a white
noise input
Estimate inputs with
standard method, new
target CPSD

Not an exhaustive list of available techniques — these are just
the most prominent in MIMO shaker testing today




20 I Force Estimation Techniques
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= Example using different techniques ) ot «'. “ :
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= Sum of input & output APSDs
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Forcing drives to be fully independent
can reduce required inputs, but
response error is high

Standard method is accurate, but
requires more input
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Accel. 3 APSD [g2/Hz]

Force Estimation Techniques
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Conclusions: Regularization & Force Estimation Techniques
2 I Demonstrated with a Simple Dynamic System

1. Condition Number of the FRF Matrix
= Location of inputs & outputs is critical — need unique information in the FRF
= Inverse susceptible to error propagation if condition number >1000

2. Fixing Poorly Conditioned Systems — Regularization
= Numerical perturbations of the FRF matrix, multiple ways to achieve this
= Change FRF matrix just enough to improve conditioning without changing overall form

3. Force Estimation Techniques
= Multiple ways to solve the problem, each with strengths and weaknesses

Standard method can be accurate at targets, but not references

Standard method generally requires higher input forces

Strictly requiring independent inputs is not ideal — use Smallwood’s method

Buzz test method provides nice balance of accuracy and inputs
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Condition Number of the FRF Matrix

= What affects condition number?
= Number of Inputs & Outputs
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Condition Number

Condition Number of the FRF Matrix

= What affects condition number?
= Location and number of Inputs & Outputs

= Damping
= Noise
10°
= riginal
104 = Higher Damping (4x)
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Increased damping reduces the
condition number somewhat

Uncorrelated noise does not
universally affect condition number
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Condition Number
Singular Values




