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Implantation Depth and Lateral Resolution

(1) Where do we need the atom to be located?

(2) With what resolution do we care about the placement?

(3) What error bar is acceptable?

(4) How do we create a deterministic single atom device?
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Example of Needed Resolution — Si Qubit
Example Architecture:

V D p<1:10

A spin quantum bit architecture with coupled donors and quantum dots in silicon

T. Schenkel', C. C. Loi, C. D. Weis, J. Bokor2, A. M. Tyryshkin3, and S. A. Lyort3
I Ion Beam Technology Group, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, USA
2Department of Electrical Engineering and Computer Sciences, University of California,

Berkeley, CA 94720, USA
3Electrical Engineering Department, Princeton University, Princeton, NJ, USA

Contact-email: T Schenkel@LBL.gov
(October 10, 2011)
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(1) Accumulation mode device

(2) Apply positive gate voltage
to pull carriers into the
channel

(3) Apply negative gate
voltage to electrostatically
define quantum dots

(4) Use a back gate to control
coupling between the donor
and the dot

Requires 10's of nm control of the donor location
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Example of Needed Resolution - Nanophotonics
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Center of mode is — 55 nm below

the surface of the waveguide

Positi:n in nrn

Requires 100's of nm control of the donor location
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Overview of High Resolution Implantation

Resolution
(1) Hydrogen Lithography

(2) Probe Based Implantation

(3) Focused Ion Beam Implantation

(4) Masked Implantation

Speed
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Hydrogen Lithography

Quick Introduction to Scanning Tunneling Microscopy (STM)

Tunneling •
voltage •

777 •
•

Control voltages for piezotube Si(1 00) — 2x1 Surface

Tunneling
current amplifier

en.wikipedia.org

Distance control
and scanning unit

Data processing
and display

Silicon

hplawastiti.

- Nt -
\ (fp 0.77 nm

Bussmann et al., SNL
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Hydrogen Lithography Overview

a.
Wet-chemically etched
registration marker
defined by optical

lithography
/

Si(001) surface

STM lithography

P atom incorporation by
C. heating after self-ordered

phosphine molecule
adsorption

Opp 410101,11.0
0.0.411. • • • • • • •

• •.‘40.•.•.•.•••A•••••••.•,•.•
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F. J. Ruess et al., Nano Lett. 4, 1969-1973 (2004)

d.

e.

f

0

Thermal removal of H-resist
with minimal P diffusion

Encapsulation with epitaxial Si

0 0
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Align contacts to
buned nanostructure
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Hydrogen Lithography Resolution

(a)

X
X
X

(b)

fal

x
x
x
x 1

(c)

.11
M. Moller et al., Nanotechnology 28, 075302 (2017)

But, this requires a UHV STM

Atomic-precision STM tip Hydrogen

lithographyternp passivation
layeron Si

Atomic step
0.14 nmtall

(e)(d)

ultrahigh vacuum
STM & epitaxy

E. Bussmann, CINT SNL https://cint.lanl.gov/
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Hydrogen Lithography Limitations

(1) Speed, yield and UHV

Scale resolution 4 slow

Field emission 4 trade off resolution for speed

Sandia
National
Laboratories

M. Rudolph et al., Appl. Phys. Lett. 105, 163110 (2014)

(2) Atomic Scale 4 how to contact to outside world?

(a) H

H terminate

Si(100) 300°C

(b)

500 nm
-411(-

Si

Incorporate P
Si cap

350°C

(C) 8 • 1 2

7

6 

0 401o•

4
5

3

(d)
Pattern P layer

Ca with Si

Etch Si and

immoDeposit Al contacts

D. R. Ward et al., Appl. Phys. Lett. 111, 193101 (2017)

(3) lon Species and Substrates

Limited resists, limited ion species, limited substrate choice
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Probe Based Implantation Overview

Quick Introduction to Atomic Force Microscopy (AFM)

Split
photo
diode

XY — motion

Feedback
computer
control

Aligned lon Implantation using Scanning Probe by A. Persaud Thesis
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Atomic Steps on sputter Palladium

https://www.nanoandmore.com/afm-gallery#&gid=1&pid=49
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Probe Based Implantation

Ion
Accelerator

Charge
analyzing
magnet

Beamline

Iris

lm

Pre-limiting AF
apertures

pole
Quadru- 

lst Pre-amp.

re-amp

Bi is

Tip &
Einzel lens sample

Retractable XYZ
Faraday Cup Stage

Stage —
control) 

  Bias
cComputer RHK - SPM1000i 
control J feedback

control

Aligned lon Implantation using Scanning Probe by A. Persaud Thesis

Similar setups:

J. Meijer's group at Leipzig
I. Rangelow's group
D. Jamieson's group at Melbourne

15 inn

Lens Element

Cantilever

30 nm

8 /nn

Ion Beam

Pre—Collimator

T. Luhmann et al., Accepted into J. of Phys. D



Probe Based Implantation Limitations

(1) Speed

Probe system

(2) Resolution

FIB milling of the cantilever tip to produce a mask

Slit scattering off the aperture

Sandia
National
Laboratories
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Secondary_,,..
MOM (Motor
(Scintilllator+RAT)

Focused lon Beam Implantation

Bonn
aloPpinfl
Deflector
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Separator

Objective 
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Scanning
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Retarding
Lens
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Single Icn

Sample Stage
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M. Hori, et al., Applied Physics Express 4, 046501 (2011)

L. Bischoff, et al., Applied Physics Reviews 3, 021101 (2016)
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Microbeam Nano Fab 150 Machine
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UHII
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SNL nanolmplanter (nl)
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National
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- Focused ion beam system (FIB)
4nm beam spot size on target

- ExB Filter (Wien Filter)

4Multiple ion species

4 Li, Si, P, Sb, etc... (separating out 28Si, 29Si, etc...)

- Fast blanking and chopping

4Single ion implantation

- Direct-write lithography

4nm targeting accuracy

RAITH
NANUFABRICATION

- Low temperature stage

- In-situ electrical probes
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Sb Source: Mass Spectrum
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SNL nanolmplanter (nl) - Sources
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SNL nanolmplanter (nl) Mass Resolution

0.25 r-

0.20 -

0.10 -

0.05 -

0.00

72Ge"

"Ge"

"Ge"

"Ge"

0.44 0.45 0.46 0.47

B-Field (T)

For example — Diamond color center
formation prefers l = 1/2 (29Si) or 9/2 (73Ge)

28 .++

0- 4

3

0
0.154 0.156 0.158

B fie d (T)

0.162 0.164 0.166

Examples isotope separation

0.2

o 1

0.0
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SNL nanolmplanter (nl) Targeting Resolution

SEM of nanostructure
lon Beam Induced
Charge Collection
(IBIC) of nanostructure

FIB + Lithography Hardware

High resolution IBIC for targeting
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J. Pachaco, et al., Rev. of Sci. Instr. 88, 123301 (2017)



Focused lon Beam Resolution

A. Sipahigil, et al., Science (2016)
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T. Schroder, et al., Nature Communications (2017)
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Arrays are easy!

(1) Vary dose

(2) Vary energy

(3) Vary ion species
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Focused lon Beam Implantation Limitations

(1) Resolution

Limited by the ion-solid interactions

(2) lon Sources

Need a usable LMAIS — no nitrogen for example
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Masked Implantation

L Substrate

Mask

Patterned Mask
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Mask materials

Photoresist, PMMA, HQS, hard masks SiN, Si02, etc...

Other options - maskless
Hydrogen
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V. V. Ngo, et al., JVST B 17, 2783 (1999)
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Masked Implantation Limitations

(1) Resolution

Limited by aperture size, EBL down to <10 nm is possible

Limited by the ion-solid interactions

Sandia
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(2) Implantation Flexibly

Need either multiple mask steps or multiple samples to vary implantation
parameters

21



Summary of High Resolution Implantation

Resolution

Hydrogen
Lithography

Probe
Based
Implantation

Focused
Ion Beam
Implantation

Masked
Implantation

Atomic

10's nm

10's nm

10's nm

Speed

Slow

Medium

Fast

Vary Fast

Flexibly

Limited

Great

Great

Great

Patterning

Limited

Yes

Yes

Limited

Sandia
National
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Deterministic Implantation

We control both the location of the atom and the number of atoms

- How can we do this?

Sandia
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(1) Hydrogen Lithography

Easy in principle, but slow and hard in reality 4 check each location to
ensure we have a donor and repeat as needed

(2) Probe Based Implantation

(3) Focused Ion Beam Implantation

(4) Masked Implantation

Need to develop a technique for
single ion detection

Impossible, dominated by Poisson Distribution

0.40

0.35

0.30

— 0.25
II
x 0.20
''_

0.15

0.10

0.05

0.00
0

O A =1 -

• A =4

o A =10 _

(Uncertainty is VT(.. ) -

10
k

15 20
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Techniques for Deterministic Implantation

(1) Single lon Sources

(2) Secondary Electron Detection (SED)

(3) Device Response itself

(4) lon Beam Induced Charge Collection (IBIC)

Sandia
National
Laboratories
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Single lon Sources
Produce a single ion and then launch it down a beamline for implantation
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Use a linear Paul trap to trap a single ion Measure single ion by image charge

dc feed hroughs

rf feedthroughs

segmented
rail trap

main vacuum chambei

— all-metal gate valve

detector chamber
membrane bellows

translation stage

W. Schnitzler, et al., New Journal of Physics 12, 065023 (2010)

(a) beam
blanker

ion source aperture

110, 1%mip.•

(b)

ICD2.1

ICD2.3

ICD2.5

input
JFET

image Faraday
charge det. cup

AO'

buffer
amplifier

" current signal to preamplifier

P. Racke, et al., Scientific Reports 8, 9781 (2018)
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Secondary Electron Detection
Use the ion beam to produce secondary electrons which we then collect

ions

Secondary electrons (SE)

Metal

Substrate

1 
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Ste

M. Hori, et al., Appl. Phys. Express 4, 046501 (2011)

SE yield is affected by topology, materials, etc...
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Sandia

Device Response National
Laboratories

Use the drain current response in a finFET to detect single ions

This is usual as displacement damage is not typically though of modifying majority carrier device response

3.025

1st trial of SU

3.020

3.015

t• 3.010
F.12

L2 3.005

3.000

2.995

C. D. Weis, et al., NIM B 267, 1222-1225 (2009)

2nd

wiro*** owaii.40.0*

pping repetition 2000

Timing of single-ion implantation [s]: 20,50,80,110,140

3rd

J 4th

J
5th

J
*0.0,6"4.,igewAy4

VMAIN4•N

0 20 40 60 80 100 120 140

Time [s]

T. Shinada, et al., Nanotechnology 19, 345202 (2008)

Similar experiments where able to distinguish between hits in the channel
(low energy) and trapped charge in the BOX (high energy)

B. C. Johnson, et al., Appl. Phys. Lett. 96, 264102 (2010) 27



Physics of lon Beam Induced Charge Collection
Vbias

Ion Char e Pre-Amp Shockley-Ramo Theorem: 

h+
—>

E
Side View

h+
—>

E

Top View

Shaping Amp

Vbias
a Charge Pre-Amp

haping Amp

Sandia
National
Laboratories

i = • k

Moving charges in an electrical field will
induce a current on the electrodes applying the

bias

Charge Collection Efficiency (CCE): 

LCCE = Charge Collected
  100
Charge Depositied

lon Beam Induced Charge (IBIC): 

lon Beam is rastered across device to
measure the Charge Collection
Efficiency (CCE) as a function of

position
28



SI

lon Beam Induced Charge Collection
Sandia
National
Laboratories

Use the e-h pairs generated by the ion beam to induce a charge on the electrodes

Qv - Al
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D. Jamieson, et al., Appl. Phys. Lett. 86, 202101 (2005)

- Device is the detector

- Commonly used to map out collection
volumes

- Can be sensitive to single ion strikes
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SNL nanolmplanter (nl) IBIC Resolution

lon Beam Induced Charge Collection (IBIC)

Vbias
Ion
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30
IBIC resolution is spot size limited, -20 nm



Summary of Deterministic Implantation

Sensitivity Speed Flexibly Is the ion
in the
correct

location?

Single lon
Source

Single lon Slow Any device No
and any information
material

SEDs

Device
Response

Single lon?

Single lon,
energy

dependence?

Vary Fast

Fast

Any device, No
but topology information

and
material

dependent

Needs
specialized

device

Yes

IBIC Single lon,
depends on
ion energy

Vary Fast Needs
specialized

device

Yes

Sandia
National
Laboratories
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Summary and Review (1)

Implantation Technique

Resolution Speed Flexibly Patterning

Hydrogen
Lithography

Atomic Slow Limited Limited

Probe 10's nm Medium Great Yes
Based
Impl. f2t!'_-,

Focused
lon Beam

lantation

10's nm Fast Great Yes

Masked \LarEgiasI eproiraii----' Limited
Implantation

No technique is perfect, but FIB is a good compromise

Sandia
National
Laboratories
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Summary and Review (2)

Single Ion Detection Technique

Sensitivity Speed Flexibly Is the ion in
the correct
location?

Single Ion
Source

Single lon Slow Any device and
any material

No information

SEDs Single lon? Vary Fast Any device, but
topology and

material
dependent

No information

Device Single lon, energy Fast Needs Yes
Response dependence? specialized

IBIC Single Ion, Vary Fast
depends on ion

energy

Livv,‘,.,

YesNeeds
specialized

device

No detection scheme is perfect, but IBIC is a good compromise

Sandia
National
Laboratories
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