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Photonic nanostructures that support Fano resonances have
attracted growing interest in recent years due to their promising
sharp spectral features and the subsequent applications these
features can support. For example, plasmonic Fano resonance
demonstrations include applications of sensing and enhanced non-
linear interaction. As an alternative, dielectric metasurface based
Fano resonances supported via Mie modes are an interesting
platform for non-linear processes because of their higher non-
linear efficiencies. These Fano resonances can be realized with a
variety of metasurface designs, and through engineering the
resonator geometry the Fano resonance frequency can be adjusted.
However, typically dielectric metasurfaces are no longer tunable
after fabrication, and an open challenge remains to demonstrate
fast and efficient spectral tuning. Here we showcase ultra-fast
tuning of a Fano resonance in the near infrared via optical pump.
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a) Fano dielectric metasurface with 9 resonators.
b) Simulated Fano spectrum, showing modes and

the resonance.
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Illustrative description of the fabrication process of the
dielectric metasurfaces. Here pillars are shown instead of

the broken symmetry Fano resonator shape.
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Experimental Setup & Results
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• Schematic of the broadband pump probe spectroscopy setup.
• A supercontinuum is generated in the sapphire plate which is used

to probe the Fano resonance.
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Transient reflectance spectra showing the
ultrafast tuning of the Fano resonance on a
picosecond timescale. The resonators are
pumped with a fluence of 52 laW / cm2

Reflectance spectra as a function of
pump fluence. Data obtained at pump

probe time delay t = 0.2 ps.
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Mechanism of the mode tuning
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• Lumerical FDTD simulations

• Spectra are calculated as a
function of time with the
GaAs index modified as
described above by the free
carrier concentration Ne = Nh

• Experimental pump-probe
spectra

• Spectral results at separate
pump-probe delays, each
with pump fluence of
52 OAT / cm2.

• The experimental value at
t = 4 ps is reproduced with
FC density of 1.7 x 1019.
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1 V e- electron density
Nh - hole density
1//e- electron effective mass
1//hh- heavy hole rnass
1/21h - light hole mass
y - damping factor
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Conclusi• & Outlook

• We demonstrated an actively tunable Fano resonance through the
ultrafast injection of free carriers in a direct-gap semiconductor
metasurface.

• Low-power all-optical tuning was achieved at picosecond timescales.
• Key to the high efficiency is the use of direct-gap semiconductors, which

offers higher absorption, and more efficient recombination, allowing for
tuning at a fluence of just 52 µW / cm2.

• Continued research work will focus on the non-linear processes in these
metasurfaces, e.g. SHG, and studying how the broken symmetry design
influences efficiency.

• The utility of this concept could be applied towards a variety of devices
such as ultrafast wavefront control for beamsteering, beamshaping,
polarization manipulation, or imaging.
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