Photonic nanostructures that support Fano resonances have
attracted growing interest in recent years due to their promising
sharp spectral features and the subsequent applications these
features can support. For example, plasmonic Fano resonance
demonstrations include applications of sensing and enhanced non-
linear interaction. As an alternative, dielectric metasurface based
Fano resonances supported via Mie modes are an interesting
platform for non-linear processes because of their higher non-
linear efficiencies. These Fano resonances can be realized with a
variety of metasurface designs, and through engineering the
resonator geometry the Fano resonance frequency can be adjusted.
However, typically dielectric metasurfaces are no longer tunable
after fabrication, and an open challenge remains to demonstrate
fast and efficient spectral tuning. Here we showcase ultra-fast
tuning of a Fano resonance in the near infrared via optical pump.
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* We demonstrated an actively tunable Fano resonance through the
ultrafast injection of free carriers in a direct-gap semiconductor
metasurface.

* Low-power all-optical tuning was achieved at picosecond timescales.

* Key to the high efficiency is the use of direct-gap semiconductors, which
offers higher absorption, and more efficient recombination, allowing for
tuning at a fluence of just 52 uyW / cm?.

* Continued research work will focus on the non-linear processes in these
metasurfaces, e.g. SHG, and studying how the broken symmetry design
influences efficiency.

* The utility of this concept could be applied towards a variety of devices
such as ultrafast wavefront control for beamsteering, beamshaping,
polarization manipulation, or imaging.
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