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Introduction

The field of nonlinear optics has steadily expanded since it started in
1960, and a rich variety of novel nonlinear
phenomena have been demonstrated in a wide range of
different systems. It is widely used in fundamental science
applications and in industrial products. However, the utilization of
nonlinear optic processes in micro- and nanoscale devices is still
difficult. A few obstacles such as the requirement of phase matching
of the fundamental and generated waves as well as high conversion
efficiencies of nonlinear processes are still unsolved. A possible
solution is to use nonlinear, all-dielectric metasurfaces [1]. They relax
phase matching conditions and increase the conversion efficiencies
due to the excitation of Mie resonances. Recent results show that
metasurfaces and nanoresonators that are made from III-V
semiconductors show record high conversion efficiencies for second
harmonic generation (SHG) up to 10-5-10-4 in comparison with other
nanostructured materials [2],[3]. However, no one has ever tried to
generate multiple and simultaneous new frequencies in a GaAs
metasurface.

Fabrication of GaAs metasurface
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(a) Design of the GaAs metasurface.
(b) A 60 ° side-view scanning electron microscope image of
the GaAs metamixer. The scale bar corresponds to 3
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linear reflectivity spectrum of the GaAs metasurface: Mie resonances
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Measured (solid line) and numerically simulated
(dashed line) reflectance spectra of the
metasurface with two cross-section local electric
field distributions at the wavelengths of 1.25
and 1.56 1..tm, which correspond to the maximal
electromagnetic field enhancements inside the GaAs
nanodisk due to the excitation of the magnetic
dipole and electric dipole Mie resonances.

One-beam experiment: SHG, THG, FHG
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Verification of SHG process by power dependent
measurements
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The dependence of the SHG intensity on the pump power
shown in linear and logarithmic scales.
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When the GaAs metasurface is pumped
by a single near-IR femtosecond beam
with a wavelength near magnetic dipole
resonance (A1-1570 nm), we observe in
the nonlinear spectra simultaneous
generation of second-, third- and, fourth-
harmonics (SHG, THG, and FHG), as
well as band-edge photoluminescence
(PL) emission.
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Two-beam experiment: frequency mixing
Nonlinear frequency mixing measurement setup
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(a) Experimental setup for frequency mixing measurements. Di: dichroic beam combiner, G:
glass window, LP: 1064 nm long pass filter, 0: near-IR objective. (b) linear reflectivity
spectrum of the GaAs nanocylinder metasurface. Arrows indicate the pumping wavelengths.
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When the two pump laser pulses arrive at the GaAs metasurface at the same time we observe a total of eleven
new frequencies spanning the UV to the near-IR. The generated signals can be divided into two groups: six

signals rely on only one of the two pump beams:- SHG, THG, FHG and PL emission (labeled in black), and five
frequency mixing signals rely on both pump beams (labeled in white) - sum-frequency generation (SFG),

six-wave mixing (SWM), and three signals corresponding to four-wave mixing (FWM).

Verification of nonlinear optical processes by power dependent and spectral
tuning measurements
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(a, b) Dependence of the SFG (wo-w2) , FWM (2w2-wi) and SWM (4w 1-w2) intensities on the
power of the w2 pump. (c) Five representative spectra showing the tuning of the normalized six-
wave mixing signal when the pump wavelengths are spectrally tuned. The arrows denote the
theoretically expected frequencies for the considered six-wave mixing process.

Pump-probe spectroscopy of newly generated frequencies
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(a) A 2D contour image of the transient nonlinear signal (logarithmic scale) when the time delay between the two pump pulses is varied. The nonlinear signals that require only one of the
pumps do not depend on the delay, while the mixing signals that rely on both pumps occur only when the two pumps overlap in time. (b) The quenching and the recovery of the w i SHG
intensity due to the arrival of the second pump w2 at the metasurface. The black dots are experimentally measured SHG intensities and the red curve is a single component exponential fit

In this work, we experimentally demonstrate simultaneous occurrence of second-, third-, fourth-
harmonic generation, sum-frequency generation, four-wave mixing and six-wave mixing
processes in III-V semiconductor metasurfaces with spectra spanning from the UV to the near-IR.

More details: Sheng Liu, Polina P. Vabishchevich, Aleksandr Vaskin, John L. Reno, Gordon A. Keeler, Michael B. Sinclair, Isabelle
Staude, and Igal Brener. "An all-dielectric metasurface as a broadband optical frequency mixer." Nature communications 9, no. 1
(2018): 2507.
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