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The field of nonlinear optics has steadily expanded since it started in
1960, and a rich variety of novel nonlinear

phenomena have been demonstrated in a wide range of

different systems. It is widely used in fundamental science
applications and in industrial products. However, the utilization of
nonlinear optic processes in micro- and nanoscale devices is still
difficult. A few obstacles such as the requirement of phase matching
of the fundamental and generated waves as well as high conversion
efficiencies of nonlinear processes are still unsolved. A possible
solution is to use nonlinear, all-dielectric metasurfaces [1]. They relax
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¥ with time constant of ~3.7 ps.

(a) A 2D contour image of the transient nonlinear signal (logarithmic scale) when the time delay between the two pump pulses is varied. The nonlinear signals that require only one of the
pumps do not depend on the delay, while the mixing signals that rely on both pumps occur only when the two pumps overlap in time. (b) The quenching and the recovery of the w, SHG

intensity due to the arrival of the second pump w, at the metasurface. The black dots are experimentally measured SHG intensities and the red curve is a single component exponential fit

In this work, we experimentally demonstrate simultaneous occurrence of second-, third-, fourth-
1000 harmonic generation, sum-frequency generation, four-wave mixing and six-wave mixing

"'"EXHpirf;lnﬂal o processes in lll-V semiconductor metasurfaces with spectra spanning from the UV to the near-IR.
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