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Redox flow batteries (RFBs) offer a readily scalable solution to grid scale energy storage. Throughout our and others’ previous works,
the membrane that divides the anolyte and catholyte has been consistently noted as a limiting factor in RFB performance. We selected five
commercially-available anion-selective membranes and compared their performance in a well-studied aqueous soluble organic system!
leveraging a methyl viologen (MV)-based anolyte and TEMPO-based catholyte. RFBs with different membranes displayed significant
variation in capacity loss due to crossover of the electroactive species from anode to cathode, and vice versa. The underlying crossover
mechanism varied from membrane to membrane, and can be predicted from the membrane’s fundamental materials properties, enabling
superior design of next generation membranes for RFBs.

A typical flow battery Capacity loss varies significantly with membrane. Cyclic Voltammetry of diluted RFB electrolytes
reveals crossover of MV and TEMPO.
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Crossover can occur by several mechanisms, three of which are explained below.
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Crossover flux due to diffusion of methyl viologen (MV):
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Primary Crossover Mechanism Capacity Loss
. . e AFX diffusion + migration 53.6%
Different membranes fail by different
. AHA electroosmotic drag 59.6%
crossover mechanisms, even for the |
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2| Choice of Membrane Greatly Influences Capacity Loss

Compare performance of five commercial anion-exchange membranes
in widely-studied aqueous soluble organic flow battery.

Wide variation in capacity loss after 100 cycles at 50 mA cm due
primarily to crossover of redox-active species

Measure >10 materials constants to predict crossover using a dilute
solution model.
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