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2 Redox Flow Batteries for Grid Scale Energy Storage

Redox flow batteries offer an easily
scalable solution for grid scale energy
storage.

In previous years we have consistently
found the membrane to be the weak link
in performance. Why?

Understand membrane limitations to drive
a 2x decrease in capacity fade vs. state of
the art.

Can we predict flow battery membrane performance from
fundamental materials properties?

■
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3 A Model Aqueous Soluble Organic Redox Flow Battery •

Use widely available methyl viologen-TEMPO redox couple chemistry1 to
compare performance of five commercial anion-exchange membranes:

NeoseptaAFX, AHA

Selemion AMV, ASV, DSV

Redox reactions on charging

Catholyte: TEMPO TEMPO+ + e-

Anolyte: MV2+ +e- -4 MV+

Electrolyte

1.5 M NaCI + 0.5 M MV or TEMPO

blanketed under argon

100 cycles at ±50 mA cm-2

1T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Mater. 2016, 6, 1501449.



4 Influence of Membrane on RFB Efficiencies
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All membranes display >95%
Coulombic efficiency.

Voltage efficiencies ranged 50-75%, inversely
proportional to membrane resistance.
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5 Membranes Display Wide Variation in Capacity Fade
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>50% capacity difference
after 100 cycles due
only to membrane

No physical membrane deterioration observed in SEM.

No chemical changes observed in IR.
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6 Differences in Capacity Fade Are Due to Crossover

Cyclic Voltammetry of diluted RFB electrolytes

mv-Enviv2+ 11 mA cm-2

TEMPO/TEMPO+

-1 -0.5 0 0.5
Potential vs. Ag/AgCI / V

1

Electrolyte from DSV membrane diluted 50x with 1.5 M NaCI
100 mV/s, 25 °C
glassy carbon working electrode

Anolyte (MV) before

Catholyte (TEMPO) before

Anolyte after: TEMPO crossed over

Catholyte after: MV crossed over
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7 Crossover Mechanisms

Diffusion of Ions

Migration

Electroosmotic Drag

Continuously occurs

Only occurs when flow
battery operates

Pressure Driven Flow

Diffusion of Solvent (Osmosis)

Ljsmall@sandia.gov



8 Crossover Mechanism: Diffusion of Ions

Crossover flux due to diffusion1:

M
V
 D
if

fu
si

on
 F
lu
x 
/
 m
o
l
 c
m

-2 
s-

1 

3.00E-10

2.00E-10

1.00E-10

0.00E+00

DAc
n =

t

•

n= flux
D= diffusion coefficient
Oc = concentration difference
t = Membrane thickness

AFX AHA AMV ASV DSV

Membrane

Counterintuitively, membranes with the highest diffusion flu) had the
lowest capacity fades. Something else is dominating capacity fade.

'Darling et al, J. Electrochem. Soc. 163, A509-A5040 (2016). Ljsmall©sandia.gov



9 Crossover Mechanism: Migration

Electric field in membrane drives
movement of ions

Membrane materials properties
that are important:

resistivity

diffusion coefficient

concentration

-

Cl-

4— TEMPO+

Cl-

4— MV2+

Cl-

Membranes with lower resistance, generally
exhibited lower capacity fades.

+
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10 Crossover Mechanism: Electroosmotic Drag

Movement of Cl- by migration is
accompanied by H20 which in turn
drags TEMPO or MV.

Membrane materials properties that
are important:

Electroosmotic drag coefficient

TEMPO and MV concentration in
membrane

Membrane water content

-

H20 H20
TEMPO ci-

H20 H20

Membranes with the lighest water contents
generally had lower capacity fades.

+
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11 Dominant Crossover Mechanism Varies

Measurement of more than l 0 materials constants for each membrane
allows identification of primary crossover mechanism.

Membrane

AFX

AHA

AMV

ASV

DSV

Primary Crossover
Mechanism

diffusion + migration

electroosmotic drag

electroosmotic drag

Capacity Loss

53.6%

59.6%

65.1%

electroosmotic drag 48.9%

diffusion 14.8%

Different membrane types exhibit different crossover failure
mechanisms, even for the same flow battery chemistry!
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12 Moving Forward •

We can predict relative flow battery performance of different
membranes based on their fundamental materials properties.

Optimizing a membrane specifically for one crossover mechanism may
inadvertently increase another mechanism, rendering the membrane an
overall worse performer.

Design custom membranes with Cy Fujimoto (Sandia)
Vary materials properties: water content, ion exchange capacity, etc.
Systematically minimize crossover, using a known chemistry

Integrated materials analysis
In-situ monitoring of electrolyte masses

0 In-situ IR monitoring of membrane degradation

Analysis of membranes for nonaqueous flow batteries
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