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Project summary

Goal: New quantum techniques and algorithms from the interplay of
quantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states
of physically-inspired Hamiltonians via

Variational approaches and QAOA

Adiabatic quantum evolution

Quantum
Simulation

1
Convex and gradient-based optimization

Convex/semidefinite relaxations

New ML-inspired optimization problems

Machine
Learning

Linear algebraic decompositions

Sampling from max-entropy distributions



Team and expertise

Sandia National Laboratories University of Maryland, College Park Los Alamos National Laboratory

• Ojas Parekh • Andrew Childs • Rolando Somma

• Andrew Baczewski • Stephen Jordan (also Microsoft Research) • Yigit Subasi

• Matthew Grace • Yi-Kai Liu (also NIST)

• Kenneth Rudinger • Brian Swingle Quantum computing, Condensed

• Mohan Sarovar • Jacob Taylor (also NIST) matter theory

• Xiaodi Wu

California lnstitute of Technology
Quantum approaches to discrete

optimization, Theoretical

computer science, Quantum and

classical simulation of many-body

quantum systems, QCVV,

Quantum dynamics and Control

Los Alamos
NATIONAL LABORATORY

EST.1943

Quantum computing, Quantum algorithms,

Quantum complexity theory, Machine

learning, Quantum many-body physics,

Quantum gravity, Quantum machine

Iearning, Optimization

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

• John Preskill

Quantum computing, High-energy

physics, Quantum error correction and

fault tolerance

Virginia Commonwealth University

• Sevag Gharibian (also Universität

Paderborn, Germany)

Quantum algorithms and complexity

theory



Project challenges

Challenge collaboration among large interdisciplinary team with complementary backgrounds

Mitigation strategies:
Bi-weekly global team meetings in addition to more frequent local meetings,
Informal technical seminars presenting and discussing ongoing work,
Plan to organize a group retreat this year

Challenge deep mathematical or theoretical results may require significant time to incubate

Mitigation strategies:
New areas of exploration leverage existing expertise and work,
Interdisciplinary interactions may lead to cross-semination,
Modularization of broad goals and aspirations into series of more focused results/papers

Challenge. balancing fundamental scientific research with DOE mission impact

Mitigation strategies
Consultation with applied machine learning experts and analysts at Sandia,
Focus on fundamental problems and techniques with wide applicability:
(e.g. solving linear systems, convex optimization, approx. ground states of local Hamiltonians)



Project outputs

Publications
Quantum algorithms and lower bounds for convex optimization

Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, Xiaodi Wu

https://arxiv.org/abs/1809.01731

Quantum al2orithms for linear svstems of eauations inspired by adiabatic quantum computing

Yigit Subasi, Rolando D. Somma, Davide Orsucci

https://arxiv.org/abs/1805.10549

Faster q u ntu m simulation by randomization

Andrew M. Childs, Aaron Ostrander, Yuan Su

https://a rx iv.o rg/a bs/1805.08385

Approximate Constraint Satisfaction in the Quantum Setting

Sevag Gharibian, Ojas Parekh, and Ryan Ciaran-Anderson

Submitted to the ACM/SIAM Symposium on Discrete Algorithms, 2019

Synergistic activities
Quantum Computing for Scientific Applications

with LBNL and ORNL QATs, Google, IBM, NASA, Rigetti Computing

Accepted tutorial at ACM/IEEE Supercomputing, 2018.

Workshop on Quantum Machine Learning

Organized by and hosted at QuICS, University of Maryland, September 24-28, 2018

http://qm12018.umiacs.io/



Poster previews



Poster 1 [Yigit Subasi, Rolando Somma]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

Scientific Achievement
A quantum algorithm to solve linear systems
of equations much more efficiently than
classical computers

Significance and Impact
Evolutions induced by simple Hamiltonians
prepare a quantum state that encodes the
solution to a linear system of equations. This
new idea will find applications in Machine

Learning and Optimization, where linear
systems play an important role

Research Details
— A Hamiltonian path is built such that the ground

states (or other eigenstates) encode the solution to
an increasingly difficult linear system of equations

— A variant of adiabatic quantum computing allows
one to prepare the ground states or eigenstates

— The complexity of our method is given by the total
evolution time and is shown to be optimal
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Schematic of the quantum algorithm for linear systems: To prepare

a quantum state that is proportional to the solution of a linear system
of equations, evolutions under certain Hamiltonians are required.
These evolutions can be implemented efficiently on a quantum

computer in many cases, achieving an exponential speedup.

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).



Poster 1 [Yigit Subasi, Rolando Somma]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations 

The randomization method (RM)
A variant of adiabatic quantum computing in which the parameters of the Hamiltonian are
changed discretely and the evolution is for a random time. The time complexity is

L2 L is the length of the path of the state
TR,M OC  

6.,A, A is the smallest spectral gap of the Hamiltonians
€ is the accuracy of the state preparation

Hamiltonians and linear systems

We observe the property
P . A )-(' = P ; b= 0 The family of Hamiltonians is

B (BtB) x= 0 H(s) = Bt(s)B(s) ,B(0) = P1-2; , B(1) = B

Important variables for this problem

The path length satisfies

The spectral gap satisfies k2 log2 (k)

ic is the condition number

L = (log k)

A = O(1/k
TRM

E

Polynomial dependence in
condition number and no
dependence in dimension
imply quantum speedup

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).



Poster 1 [Yigit Subasi, Rolando Somma]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

The randomization method (RM)
A variant of adiabatic quantum computing in which the parameters of the Hamiltonian are
changed discretely and the evolution is for a random time. The time complexity is

L2 L is the length of the path of the state
TRN4 OC €.A A is the smallest spectral gap of the Hamiltonians

€ is the accuracy of the state preparation
Hamiltonians an

L
d linear systems: spectral gap amplification

We observe the property
P I-DL . A )-(' = P 1-,; 6' = o

Important variables for this problem

The path length satisfies

L = O(log k)
The spectral gap satisfies

A = 0(1/ k)
lc is the condition number

The gap-amplified family of
Hamiltonians is:

H(s) = B(s) & a+ + Bt(s) 0 a—

k log2 (k)
TRM CX 

E

Linear dependence in
condition number results in
an optimal quantum
algorithm for linear systems

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).



Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems 

Scientific Achievement
Designed and demonstrated protocol for generating
thermal states of many-body quantum systems using
coupled, driven ancilla spins.

Significance and impact
Quantum simulation of thermal states is useful for
extracting finite temperature properties of many-body
quantum systems, and we have developed a practical
protocol for doing this.

Research Details
Thermalizing a many-body quantum system requires
coupling it to an engineered reservoir. The conditions
required for thermalization are known if one has access
to a macroscopic reservoir, but this is not typical.

We have developed a protocol that results in
thermalization using driven, dissipated ancilla spins that
are coupled to the system in a way that results in
engineered energy exchange.

Numerical and analytical results demonstrate that the
steady-state of the engineered dynamics is the desired
thermal state of the many-body system.

- - -

mitt .

Example target
systern: cold
atom lattice,
Esslinger Lab,
ETH Zurich

System Ancilla

=
41.
= -

=

Schematic of protocol: Ancilla systems that are
optically pumped to local thermal states are coupled
to the system to thermalize. The resonant energy of
the ancilla systems are swept across the spectrum of
the primary system, and over a few sweeps this
dynamics generates a thermal distribution in the
principal system.



Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems 
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A time-dependent term is added
to the ancilla energy to sweep the
system's full energy spectrum.
Rn(t) = Aof(t)
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A reduced master equation describes system evolution
when the ancilla dynamics is averaged over
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Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body quantum systems 

Two Site System
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Markovian Evolution of Random Initial State
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Ongoing Research:
• Analytical calculations

to approximate the
time-averaged,

effective generator of
evolution
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• Demonstrate this scheme is generalizable to generic system
Hamiltonians.
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Poster 3 [Yuan Su, Andrew Childs]
Faster quantum simulation by randomization 

lo"

lps

First order

Deterininist ic

C Randomized

1C

Comparison of the number of trotter steps
between deterministic and randomized first-order
product formulas. Error bars are omitted when
they are negligibly small on the plot. Straight lines
show powerlaw fits to the data.

Scientific Achievement
Stronger product-formula bounds were proved by
randomization, and their advantage for near-term
quantum simulation was evidenced by numerics.

Significance and impact
Product formula algorithm is a straightforward yet
surprisingly efficient approach to simulating quantum
dynamics on a quantum computer. Recent results show
that this approach can outperform more sophisticated
algorithms, and it is important to understand why it has
such outstanding performance.

Research Details
— Proved stronger error bounds for product formulas by randomizing how the terms in the

Hamiltonian are ordered.
— Showed that randomized bounds can be asymptotically better than previous bounds that exploit

commutation between the terms in the Hamiltonian.
— Numerically compared the deterministic and randomized product formulas, showing improvement

even with respect to the empirical performance.
Andrew Childs, et al., arXiv:1805.08385 (2018)



Poster 3 [Yuan Su, Andrew Childs]
Faster quantum simulation by randomization 

Quantum simulation
rGiven a description of a Hamiltonian H and an evolution time t, perform U(t) = up to
some error E.,

Product formula algorithm

. Target system H - EfL a f rie

0 < af < 1 ,

1-1 is a tensor product of Paulis (up to a sign).

. Can use the first-order product formula

1
1

((ift)2)

. Generalizations to (2k)th-order are known [Suzuki 92].

. Advantage: straightforward; can empirically outperform more
sophisticated simulation algorithms.

. Problem: error bounds are loose in practice.
Andrew Childs, et al., arXiv:1805.08385 (2018)



Poster 3 [Yuan Su, Andrew Childs]
Faster quantum simulation by randomization 

New bounds by randomization

• We prove stronger bounds by
randomizing how terms in the
Hamiltonian are ordered.

• New error bound: 0 (Lt)32
improving over the old bound

0(L02
• We also derive new bounds for

higher-order formulas.

• Numerical simulations show
improvement even with respect to
the empirical performance.

lo5

First order

0 Deterministic

0 Randomized

10

Comparison of the number of
trotter steps between

deterministic and randomized
first-order product formulas.

Andrew Childs, et al., arXiv:1805.08385 (2018)



Highlights of recent and ongoing work



Highlight 1 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]
Approximate Solutions for Quantum Heisenberg Models via Hvperplane Rounding

Discrete optimization techniques enable new rigorous approximations of low-energy states of
quantum Heisenberg Hamiltonians, a central topic in condensed matter physics.

A V
• A
A V
V A

Anti-ferromagnetic Heisenberg model: roughly
neighboring quantum particles aim to align in
opposite directions. This kind of Hamiltonian
appears, for example, as an effective Hamiltonian
for so-called Mott insulators.
(Image: Sachdev, http://arxiv.org/abs/1203.4565)

Significance and lmpaci
The Heisenberg model is fundamental for describing
quantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of the
anti-ferromagnetic Heisenberg model are notoriously
difficult to analyze. Exploiting analytical tools from
discrete optimization, a team led by Sandia National Labs
has developed new algorithms to rigorously approximate
hard-to-compute properties of this model beyond 1-D.

Research Details
— The researchers introduce a new quantum Hamiltonian model
that simultaneously generalizes the quantum Heisenberg anti-
ferromagnet and hard classical graph partitioning problems.

— A new classical algorithm produces approximate solutions for
the above model that are mathematically guaranteed to be
relatively close in quality to optimal quantum solutions.



Highlight 1 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]
Approximate Solutions for Quantum Heisenberg Models via Discrete Optimization 

New maximum-energy version of the antiferromagnetic Heisenberg model,
generalizing the fundamental Maximum Cut discrete optimization problem:

Max Cut Hamiltonian:
E(I — ZiZj) C> 

Quantum Heisenberg generalization:
E(I — XiXj — Kr/ — Z,Z1)

• The hard-to-solve Heisenberg maximum energy optimization problem is
relaxed to an easier-to-solve semidefinite program

• A generalization of the celebrated Goemans-Williamson hyperplane
rounding method produces an approximate max-energy product state

We obtain the first nontrivial rigorous approximations for these problems:
0.498-approx via a product state, where 1/2 is best possible for product states
(also 0.649-approx for XY model, where 2/3 is best possible for product states)

Our results extend to approximating max-energy of any "symmetric" 2-local Hamiltonian:

/ — E k=1}(ak,iXi + fkiYi + ykiZi)(akiXj + kir/ + ykiZJ)



Highlight 2 [Aniruddha Bapat, Stephan Jordan]
Optimally Controlled Quantum Optimization 

General Framework

= —iH(u)10)dt

H (u)   (1 — u)H0 + u.Hl

: "Easy" Hamiltonian (e.g. TFIM)
Ground state = Initial state

: Cost Hamiltonian

Ground state = Global cost minimum

Example: Ramp with Spike
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[1] Z.C. Yang et al., Optimizing Variational Quantum Algorithms using

Pontryagin's Minimum Principle, Phys. Rev. X 7, 021027 (2017).
[2] L.T. Brady, W. van Dam, Spectral Gap Analysis for Efficient Tunneling in

Quantum Adiabatic Optimization, arXiv:1601.01720v2 (2016).
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