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Project summary

Goal: New quantum techniques and algorithms from the interplay of
guantum simulation, optimization, and machine learning

Optimization

(Approximate) extremal energy states

- d optimizati
of physically-inspired Hamiltonians Comvex and gradient-based eptimization

C idefinite relaxations
Variational approaches and QAOA onvex/semidefini s

: i A New ML-inspired optimization problems
Adiabatic quantum evolution P P P

Quantum Machine

Simulation Learning

Linear algebraic decompositions

Sampling from max-entropy distributions
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Team and expertise

Sandia National Laboratories University of Maryland, College Park Los Alamos National Laboratory
* Qjas Parekh * Andrew Childs * Rolando Somma
* Andrew Baczewski * Stephen Jordan (also Microsoft Research) < Yigit Subasi
* Matthew Grace * Yi-Kai Liu (also NIST)
* Kenneth Rudinger * Brian Swingle Quantum computing, Condensed
* Mohan Sarovar * Jacob Taylor (also NIST) matter theory

* Xiaodi Wu

California Institute of Technology
Quantum approaches to discrete

optimization, Theoretical Quantum computing, Quantum algorithms, e« John Preskill

computer science, Quantum and Quantum complexity theory, Machine

classical simulation of many-body learning, Quantum many-body physics, Quantum computing, High-energy
guantum systems, QCVV, Quantum gravity, Quantum machine physics, Quantum error correction and
Quantum dynamics and Control learning, Optimization fault tolerance
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Project challenges

Challenge: collaboration among large interdisciplinary team with complementary backgrounds

Mitigation strategies:

Bi-weekly global team meetings in addition to more frequent local meetings,
Informal technical seminars presenting and discussing ongoing work,

Plan to organize a group retreat this year

Challenge: deep mathematical or theoretical results may require significant time to incubate

Mitigation strategies:

New areas of exploration leverage existing expertise and work,

Interdisciplinary interactions may lead to cross-semination,

Modularization of broad goals and aspirations into series of more focused results/papers

Challenge: balancing fundamental scientific research with DOE mission impact

Mitigation strategies:

Consultation with applied machine learning experts and analysts at Sandia,

Focus on fundamental problems and techniques with wide applicability:

(e.g. solving linear systems, convex optimization, approx. ground states of local Hamiltonians)
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Project outputs

Publications

Quantum algorithms and lower bounds for convex optimization
Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, Xiaodi Wu
https://arxiv.org/abs/1809.01731

Quantum algorithms for linear systems of equations inspired by adiabatic quantum computing
Yigit Subasi, Rolando D. Somma, Davide Orsucci
https://arxiv.org/abs/1805.10549

Faster quantum simulation by randomization
Andrew M. Childs, Aaron Ostrander, Yuan Su
https://arxiv.org/abs/1805.08385

Approximate Constraint Satisfaction in the Quantum Setting
Sevag Gharibian, Ojas Parekh, and Ryan Ciaran-Anderson
Submitted to the ACM/SIAM Symposium on Discrete Algorithms, 2019

Synergistic activities

Quantum Computing for Scientific Applications

with LBNL and ORNL QATs, Google, IBM, NASA, Rigetti Computing
Accepted tutorial at ACM/IEEE Supercomputing, 2018.

Workshop on Quantum Machine Learning
Organized by and hosted at QuICS, University of Maryland, September 24-28, 2018
http://gmI2018.umiacs.io/
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Poster 1 [vigit Subasi, Rolando Sommal]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

Scientific Achievement -
A quantum algorithm to solve linear systems | Given A X = b, the goal is to prepare
of equations much more efficiently than the quantum state |x) o (1/4)|b)
classical computers

Significance and Impact Eigenstate path

Evolutions induced by simple Hamiltonians
prepare a quantum state that encodes the
solution to a linear system of equations. This
new idea will find applications in Machine
Learning and Optimization, where linear
systems play an important role

Research Details
— A Hamiltonian path is built such that the ground

states (or other eigenstates) encode the solution to
an increasingly difficult linear system of equations

— A variant of adiabatic quantum computing allows Schematic of the quantum algorithm for linear systems: To prepare
one to prepare the ground states or eigenstates a quantum state that is proportional to the solution of a linear system

. S of equations, evolutions under certain Hamiltonians are required.
— The complexity of our method is given by the total ' . :
These evolutions can be implemented efficiently on a quantum

evolution time and is shown to be optimal computer in many cases, achieving an exponential speedup.

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).



Poster 1 [vigit Subasi, Rolando Sommal]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

The randomization method (RM)
A variant of adiabatic guantum computing in which the parameters of the Hamiltonian are

changed discretely and the evolution is for a random time. The time complexity is

- L? [ L isthe length of the path of the state
RM & e.A —/\ is the smallest spectral gap of the Hamiltonians
€ is the accuracy of the state preparation
Hamiltonians and linear systems

We observe the property .
PLAX=Py b=0 1 The family of Hamiltonians is

B ®»(B'B) x=0 J H(s) = BY(s)B(s) ,B(0) =P4 ,B(1) =B

Important variables for this problem

The path length satisfies - Polynomial dependence in
L = 0O(logk ndition number and n
The spectral gap satisfies ( . ) K2 logQ(ﬁ:) conditio u- be. § d. ©
o IRm dependence in dimension
A=0(1/k € :
K is the condition number ( / imply quantum speedup

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).




Poster 1 [vigit Subasi, Rolando Sommal]
Quantum-Adiabatic like Algorithms for Solving Linear Systems of Equations

The randomization method (RM)
A variant of adiabatic guantum computing in which the parameters of the Hamiltonian are

changed discretely and the evolution is for a random time. The time complexity is

- L? [ L isthe length of the path of the state
BB % e.\ —/\ is the smallest spectral gap of the Hamiltonians

€ is the accuracy of the state preparation
Hamiltonians and linear systems: spectral gap amplification

We observe the property B
PLAX=PL b=0 The gap-amplified family of
Hamiltonians is:
H(s)=B(s)@oT +Bi(s) @0
Important variables for this problem

The path length satisfies B Linear dependence in
L = O(logk ndition number results in
The spectral gap satisfies (log #) /ilog2(/£) co dt_o umber results
A — O/ Tarm X ————= | an optimal quantum
— K € i i
K is the condition number (1/%) algorithm for linear systems

Y. Subasi, R.D. Somma, and D. Orsucci, arXiv:1805.10549 (2018).




Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body guantum systems

Scientific Achievement
Designed and demonstrated protocol for generating
thermal states of many-body quantum systems using
coupled, driven ancilla spins.

Significance and Impact
Quantum simulation of thermal states is useful for
extracting finite temperature properties of many-body
guantum systems, and we have developed a practical
protocol for doing this.

Research Details

Thermalizing a many-body quantum system requires
coupling it to an engineered reservoir. The conditions
required for thermalization are known if one has access
to a macroscopic reservoir, but this is not typical.

We have developed a protocol that results in
thermalization using driven, dissipated ancilla spins that
are coupled to the system in a way that results in
engineered energy exchange.

Numerical and analytical results demonstrate that the
steady-state of the engineered dynamics is the desired
thermal state of the many-body system.

Example target
system: cold
atom lattice,
Esslinger Lab,
ETH Zurich

L ‘“ System Ancilla

®e

(

{

l
TN

Schematic of protocol: Ancilla systems that are
optically pumped to local thermal states are coupled
to the system to thermalize. The resonant energy of
the ancilla systems are swept across the spectrum of
the primary system, and over a few sweeps this
dynamics generates a thermal distribution in the
principal system.




Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body guantum systems

i System  Ancilla 4\ time-dependent term is added
b to the ancilla energy to sweep the
system’s full energy spectrum.

: — “ ‘ : E Qm(t) - AOf(t) M M
“v . ‘ 1 “ . :‘ » — HT(t) - Hsys - Z Qm(t)’r;n—i_ Z 9m (O-I;mT:;cm)

2

Ancilla opticall
(% netfia opticaly Timescale Hierarchy
pumped to thermal

<< G ~ I << || Hgys ||, Vi, t

state df (t)
dt

e I = 7 4y

A reduced master equation describes system evolution
when the ancilla dynamics is averaged over

Operator on System

p=g>> A(t,w) (X(w)pXT(w) - %{XT(W)X(W), p}> X(w)= > le){elog|€) (€]

e —e=w

Ancilla Correlation Functions
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Poster 2 [Mekena Metcalf, Jonathan Moussa, Mohan Sarovar]
Engineered thermalization of many-body guantum systems

) How close is the time averaged state to thermal state?
Two Site System

A = |[ptn — Pl
w1 W2
2 - —702 — 703 + Jxa;ai + Jyaéai + Jzaiaz ¥ X
e 1 [T dtL(t) _
2 pth(/B): —BH 7—|:€U i|pth:p
y Tr(e=FPH)
Hi o= Zg (O-xTx)
Vg =1 7
. 2
o o Q;(t) = Ajpar sin®(wt) o+ ]
; 4 ' __ mazx min
Amaﬂ? - Esys o Esys s |
4
Markovian Evolution of Random Initial State Tt . 1
Ongoing Research: L |
* Analytical calculations | . )
to approximate the T T U I
time-averaged, | | Sk

effective generator of
evolution

* Prove fixed point of the dynamics and provide a bound on the
thermalization time, respectively.

Demonstrate this scheme is generalizable to generic system
Hamiltonians.




Poster 3 [Yuan Su, Andrew Childs]

Faster quantum simulation by randomization

105 ¢

=

——

— Scientific Achievement

- | Stronger product-formula bounds were proved by
| randomization, and their advantage for near-term
—__—+ gquantum simulation was evidenced by numerics.

10°

104 | f’"’fﬁ =
- _’——""'_/JO—-—F'—F i w - -
- =11 Significance and Impact
3 Tepric Product formula algorithm is a straightforward yet
108 ; e T surprisingly efficient approach to simulating quantum
Comparison of the number of trotter steps dynamics on a quantum computer. Recent results show

between deterministic and randomized first-order that this approach can outperform more sophisticated
product formulas. Error bars are omitted when

they are negligibly small on the plot. Straight lines algorithms, and it is important to understand why it has
show powerlaw fits to the data. such outstanding performance.

Research Details

— Proved stronger error bounds for product formulas by randomizing how the terms in the
Hamiltonian are ordered.

— Showed that randomized bounds can be asymptotically better than previous bounds that exploit
commutation between the terms in the Hamiltonian.

— Numerically compared the deterministic and randomized product formulas, showing improvement

even with respect to the empirical performance.
Andrew Childs, et al., arXiv:1805.08385 (2018)




Poster 3 [Yuan Su, Andrew Childs]
Faster guantum simulation by randomization

Quantum simulation

Given a description of a Hamiltonian H and an evolution time t, perform U(t) = e~*" up to
some error €.

(o A

Product formula algorithm
. Target system H = 25:1 opHy

0<ay,<1;

Hy is a tensor product of Paulis (up to a sign).
« Can use the first-order product formula

| L T 2

r

j=1
« Generalizations to (2k)th-order are known [Suzuki 92].

. Advantage: straightforward; can empirically outperform more
sophisticated simulation algorithms.

« Problem: error bounds are loose in practice.
Andrew Childs, et al., arXiv:1805.08385 (2018)




Poster 3 [Yuan Su, Andrew Childs]

Faster quantum simulation by randomization

New bounds by randomization 106

We prove stronger bounds by //

randomizing how terms in the allé
Hamiltonian are ordered. :

3 I i
New error bound: 0(%) ’ o —0 |
improving over the old bound i | f

B First order
(Lt)2 0O Deterministic
O 0. Sovanliny . S— O Randomized
T

3 !
- 6 7 8 9 10

We also derive new bounds for

higher-order formulas. Comparison of the number of

Numerical simulations show trotter steps between
improvement even with respect to deterministic and randomized
the empirical performance. )

first-order product formulas.

Andrew Childs, et al., arXiv:1805.08385 (2018)



Highlights of recent and ongoing work



Highlight 1 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

Approximate Solutions for Quantum Heisenberg Models via Hyperplane Rounding

Discrete optimization techniques enable new rigorous approximations of low-energy states of
guantum Heisenberg Hamiltonians, a central topic in condensed matter physics.

Significance and Impact
The Heisenberg model is fundamental for describing
guantum magnetism, superconductivity, and charge
density waves. Beyond 1 dimension, the properties of the
anti-ferromagnetic Heisenberg model are notoriously
difficult to analyze. Exploiting analytical tools from
discrete optimization, a team led by Sandia National Labs
has developed new algorithms to rigorously approximate

Anti-ferromagnetic Heisenberg model: roughly hard-to—compute properties of this model beyond 1-D.

neighboring quantum particles aim to align in Research Details
opposite directions. This kind of Hamiltonian

appears, for example, as an effective Hamiltonian ~ — The researchers introduce a new quantum Hamiltonian model
for so-called Mott insulators. that simultaneously generalizes the quantum Heisenberg anti-
\Image: Sachdey; hitp://ardiv.org fakis/1203.4565) ferromagnet and hard classical graph partitioning problems.

— A new classical algorithm produces approximate solutions for
the above model that are mathematically guaranteed to be
relatively close in quality to optimal quantum solutions.



Highlight 1 [Sevag Gharibian, Ojas Parekh, Ciaran Ryan-Anderson]

Approximate Solutions for Quantum Heisenberg Models via Discrete Optimization

New maximum-energy version of the antiferromagnetic Heisenberg model,
generalizing the fundamental Maximum Cut discrete optimization problem:

Max Cut Hamiltonian: Quantum Heisenberg generalization:
S - Z:Z)) — YU — XX, — VY, — Z,7))

* The hard-to-solve Heisenberg maximum energy optimization problem is
relaxed to an easier-to-solve semidefinite program

e A generalization of the celebrated Goemans-Williamson hyperplane
rounding method produces an approximate max-energy product state

We obtain the first nontrivial rigorous approximations for these problems:
0.498-approx via a product state, where 1/2 is best possible for product states
(also 0.649-approx for XY model, where 2/3 is best possible for product states)

Our results extend to approximating max-energy of any “symmetric” 2-local Hamiltonian:
3
I = Xie=13(ai,iXi + Br,iYi + ViiZ) (i, jXj + Br jY; + Vi, jZ))




Highlight 2 [Aniruddha Bapat, Stephan Jordan]
Optimally Controlled Quantum Optimization

General Framework Adiabatic: QAO, Quantum Bang-bang: QAOA, VQE, Spin
d annealing, ... pulse echo, ...
—|) = —itH(u)|Y H H H
dt"> ( )‘> 1 1 1 1 1
U U
H(u)=(1—-u)Hy+uH, ) Lo H | 5| |
t
: “Easy” Hamiltonian (e.g. TFIM R S ——
H 0 Grouyn  siste = Initia(l stgate ) Pontryagin’s Minimum Principle
- (%
H | : Cost Hamiltonian Optimal controls are bang-bang !
Ground state = Global cost minimum
Example: Ramp with Spike ] QAO [l QAOA-1
A i ! '
e Exponential
' - 0.8 F Gmn O e—Cnats=1/2 - -
: ‘; 2 xn—B/2 u;)'
g : £ 06 O(J’go,al &£
e 1 ] iy it
(v(u,.') n | : s oy q’”’*’\a 3
(;—)n“ : Eu < Eo
i = = 02 Constant‘ 2
1] 71"/—1 'n' . .!]m'm Of il I )
w = ‘Zl Z9 Z”‘ 0 01 02 03 04 05 0 01 02 03 04 0S5
- Width Scaling Power o Width Scaling Power o
Key intuition: QAOA-1 samples local gradient on hypercube, and ?
imparts a momentum kick to wavepacket, allowing barrier jumps. —_—

[1] Z.C. Yang et al., Optimizing Variational Quantum Algorithms using [2] L.T. Brady, W. van Dam, Spectral Gap Analysis for Efficient Tunnelingin
Pontryagin's Minimum Principle, Phys. Rev. X 7, 021027 (2017). Quantum Adiabatic Optimization, arXiv:1601.01720v2 (2016).
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