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Introduction
• Stationary energy storage systems (ESS) are increasingly deployed to maintain a

robust and resilient grid.
• As system size increases, financial and safety issues become important topics.
• Holistic approach: electrochemistry, materials, and whole-cell abuse will fill

knowledge gaps.
• Models allow projection of knowledge to different scenarios and larger scales.

Existing thermal runaway models successful for initial single-cell thermal runaway.
• HMBDO I model for graphite anode + LiCo02 cathode (Hatchard et al. 200 I).

• Needed model features to evaluate safety for large Li-lon systems include:
• Applicability to batteries with different form factors, chemistries, SOC.
• Prediction dependent on material properties.
• High-temperature chemistry to predict propagation.
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New Physics Understanding from Plateau Model Development
• Prismatic and basal SEI differ in composition and thickness.
• Defect formation favored at grain boundaries and/or the basal-prismatic interface.
• Defects include neutral Li atoms and other features that promote tunneling.
• Tunneling barrier inversely proportional to the length of the defect-rich interfaces.

New Physics Understanding from Anode Runaway Model 
• Contraction of graphite during rapid delithiation may strain and damage SEI.
• Onset of exfoliation may deform and rupture SEI.
• Any significant damage to SEI allows the reaction to accelerate.
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Enables prediction of high-temperature heat release 
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Gachat_e_t_al. 2012 (left): 
Open DSC pans allowed
electrolyte evaporation

Yamaki et al. 2002 (right): 
Electrode/electrolyte
ratio not reported, but
no electrolyte was added
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Anode Decomposition Model Benefits 
• More fundamental in terms of thermodynamics and materials science.
• Heat release rates scale properly with material properties, cell build, and SOC.
• Effect of limiting reactants included.
• High-temperature heat release included; more suitable for propagation studies.

U.S. DEPARTMENT OF

ENERGY

A i.W C+CA'

fat,V L' ‘osthilt's"onat larecitigar

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA0003525.
SAND No.

Acknowledgements:
• Funded by Dr. Imre Gyuk through the U.S. Department of Energy; Office of Electricity
• Special thanks to the following people for providing experimental data, thoughtful discussions, and advice
• Summer Ferreira • Loraine Torres-Castro • Joshua Lamb • Jeff Engerer • Andrew Kurzawski • Yuliya Preger

Sandia
National
Laboratories

T. D. Hatchard, D. D. MacNeil,A. Basu and J. R. Dahn, J. Electrochem. Soc., I 48,A755 (2001).
M. N. Richard and J. R. Dahn, J. Electrochem. Soc., 146, 2078 (1999).
E. P. Roth and D. H. Doughty, J. Power Sources, I 28, 308 (2004). (Sandia Gen! and Gen 2)

Y. S. Park and S. M. Lee, Electrochim.Acta, 54, 3339 (2009). J.Yamaki, H.Takatsuji,T. Kawamura and M. Egashira, Solid State Ion., 148, 241 (2002).
D. D. MacNeil, D. Larcher and J. R. Dahn, J. Electrochem. Soc., 146, 3596 (1999). R. C. Shurtz, J. D. Engerer and J. C. Hewson, J. Electrochem. Soc., submitted (2018). Parts 1 and I I

G. Gachot, S. Grugeon, G. G. Eshetu, D. Mathiron, P. Ribiere, M.Armand and S. Laruelle, Electrochim.Acta, 83, 402 (2012). 1 1

SAND2018-10527C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.


