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* Stationary energy storage systems (ESS) are increasingly deployed to maintaina
robust and resilient grid.

* As system size increases, financial and safety issues become important topics. .

* Holistic approach: electrochemistry, materials, and whole-cell abuse will fill
knowledge gaps.

* Models allow projection of knowledge to different scenarios and larger scales.

Introduction

Existing thermal runaway models successful for initial single-cell thermal runaway.

* HMBDOI model for graphite anode + LiCoO, cathode (Hatchard et al. 2001).
Needed model features to evaluate safety for large Li-lon systems include:

* Applicability to batteries with different form factors, chemistries, SOC.

* Prediction dependent on material properties.

* High-temperature chemistry to predict propagation.
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Enhanced Model Predictive Capability

DSC Plateau heat release trends best for n, = 0.5
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Enables prediction of high-temperature heat release

° Basal SEI

— = Lithium-lon Diffusion

New Physics Understanding from Plateau Model Development

* Prismatic and basal SEIl differ in composition and thickness.

* Defect formation favored at grain boundaries and/or the basal-prismatic interface.
* Defects include neutral Li atoms and other features that promote tunneling.

* Tunneling barrier inversely proportional to the length of the defect-rich interfaces.

New Physics Understanding from Anode Runaway Model

* Contraction of graphite during rapid delithiation may strain and damage SEI.
* Onset of exfoliation may deform and rupture SEI.

* Any significant damage to SEl allows the reaction to accelerate.
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Anode Decomposition Model Benefits

* More fundamental in terms of thermodynamics and materials science.

* Heat release rates scale properly with material properties, cell build,and SOC.
* Effect of limiting reactants included.

* High-temperature heat release included; more suitable for propagation studies.
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