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Outline

**Motivation and problem formulation

“*Real-time energy management of energy storage

“*Bidding into day-ahead and real-time energy markets

“*Case study in New England
“*Energy storage, solar, wind, commercial load

’:’Real—time management of energy storage can reduce costs
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“*Motivation and problem formulation
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41 Motivation

Modern energy systems are rapidly changing,

“*Changing generation mix I

**Highly distributed loads and generation <O Q>

“*Growing need for resilience @ ENERGY

Characterized by large amount of variability and uncertainty
“*Loads

+*Generation

Need to design systems with resources and energy

“*Prices
management algorithms to accommodate/take advantage.
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s | Problem Architecture

Energy management system for minimizing cost of
energy purchased from the grid while balancing net load.
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L X 4
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“*Real-time energy management of energy storage

“*Bidding into day-ahead and real-time energy markets
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13 1 Real-Time Algorithm

PROCEDURE: Each day

»Stage 1 (DA):
» Receive/compute hourly DA net load and price forecasts
» Solve DA scheduling optimization
» Bid resulting supply/demand into DA market

»Stage 2 (RT):

» For each time step:

» Measure/receive SoC, net load, RT price
» Receive/compute RT net load and price forecasts
» Solve RT dispatch optimization

» Implement charge/dispatch command
» End for

END PROCEDURE

Repeat procedure each day.
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L X 4

“*Case study in New England
“*Energy storage, solar, wind, commercial load

“*Real-time management of energy storage can reduce costs




15 I Data for March | to January 24
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16 I Total cumulative cost from 3/1/2017 — 1/24/2018
5 [ I | I [
$432716
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»Using ES reduces cost >15% (1MW /1MWh) or >30% (2MW/ ZMWIL)

.~ Simple (suboptimal) algorithm with naive forecasts performs well (>23% cost reduction)
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17 I Case Study: Probabilistic Constraint -
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18 I Case Study: Probabilistic Constraint
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19 I Conclusions

**Grid conditions are changing - need flexible and controllable resources
and effective energy management systems.

“*Energy storage can effectively reduce costs for entities participating in
markets (even without sophisticated algorithms/forecasts)

“*Case study:
“*Energy storage system reduced operating cost
“*Simple (suboptimal) stochastic approach performs well
“*Conservative bidding in the day-ahead market was advantageous

“*Only considered energy arbitrage; could further reduce costs by participating in
freq. regulation markets
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2 I Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Mitigate $79B/yr in commercial Reduce $2T in required T&D
losses from outages upgrades
v ﬁ\ .
Wﬂ\/N l\f'\/\/ ‘O—
Reduce commercial and industrial electrical bills Balance the variability of 825 GW of new
through demand charge management. 7.5 million U.S. renewable generation while improving
customers are enrolled in dynamic pricing (EIA 2015) grid reliability and efficiency.

&> U.S. DEPARTMENT OF

© ENERGY




23 | Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Regianal Spending on T&D Projects Completed by
2020 Heavily Weighted Towards the Rockies

Reduce commercial and industrial electrical bills Balance the variability of 825 GW of new
through demand charge management. 7.5 million U.S. renewable generation while improving
customers are enrolled in dynamic pricing (EIA 2015) grid reliability and efficiency.

‘ U.S. DEPARTMENT OF




24 I Two-Stage Optimization
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25 I Two-Stage Optimization

Expect¢d value

24 \
Day-Ahead Scheduling min E E[)\EA _ )\ET] ]’5%
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Real-Time Dispatch ﬁt-T ,ﬁg,T ,ﬁf.T 1—1

Subiject to the probabilistic constraint

P{pp* + p§ — pf — pf <0} > «

If normally distributed forecast errors, probabilistic constraint can be written as
deterministic linear inequality constraint. Optimization problems become linear programs.
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Parameters

Parameter Description Value Units
P Air density 1.2 kg/m®
v Wind turbine cut-in speed 4 m/s
v Wind turbine cut-out speed 25 m/s
M Wind turbine rated speed 10 m/s
- Wind conversion efficiency 0.45 -
NPV PV panel efficiency 0.15 -
Necony PV conversion efficiency 0.90 -
Ns ES storage efficiency 1.00 -
Ne ES charging efficiency 0.85 -
Apv Total area of solar panels 1000 m?
Awind Total swept area of turbine blades 1357 m?
DES ES power rating 1000 kW
SES ES energy capacity 1000 kWh
S0 Daily initial SoC Sgs /2 kWh
) Desired fraction of unused SoC 0.1 -
At Real-time optimization time step 5 minutes
¥ j | Real-time optimization horizon 48 | -
o Load balancing probability 0.99 -

1 MW
IMWh

4 hour window




27 I Case Study: Day-Ahead Forecasts
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»Houtly load forecast = load in same hour from previous week
»Houtly solar/wind generation forecast = average value in same hour from previous day
»Houtly day-ahead price forecast = day-ahead price in same hour from previous day

»Houtly-averaged real-time price forecast = average real-time price in same hour from
previous day




28 I Case Study: Real-Time Forecasts |\
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29 I Case Study: Solution Snapshot
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30 I Data for August 6-12
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Fig. 23. GHI for the week of August 6-12, 2015.
Fig. 22. Load for the week of August 6-12, 2017.
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Fig. 24. Wind speed for the week of August 6-12, 2015.

Fig. 25. Renewable Generation for the week of August 6-12, 2015.




31 | Data for August 6-12
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Fig. 26. Prices for the week of August 6-12, 2017.
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2 | Histograms of net load forecasting errors

20

—
(23

Frequency
Frequency
=

(<23

-1500 -1000 -500 0 500 1000 1500 O 5000 1500 -1000  -500 0 500 1000 1500 2000
Power Error [kW] Power Error kW]
Fig. 43. Histogram of the Day-Ahead net load forecasting error = Fig. 44. Histogram of the Day-Ahead net load forecasting error
for the hour of 12AM to 1AM. The normal distribution fit is shown in red. for the hour of 12PM to 1PM. The normal distribution fit is shown in red.
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Fig. 45. Histogram of the Real-Time net load forecasting error
for next five-minute interval. The normal distribution fit is shown in red.
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Why Do We Need Storage!?

Storage can provide many grid services:
> Resiliency and reliability
° Transmission and Distribution (T&D) upgrade deferral
> More efficient operation of the generation fleet
> Balance the variability of renewable generation
> Behind the meter savings for commercial and industrial customers
> Ancillary services (frequency regulation, spinning reserve, black start, etc.)
° Peaker plant replacement

> Voltage support




34 I Energy Storage Analytics

Equitable Regulatory Environment Thrust Area

Goals: Lower barriers to widespread deployment of energy storage by identitying
new and existing value streams, quantifying the impact of policy on deployment,
and developing new control strategies

Objectives:
° Project case studies

° Tools for storage valuation

° Identify new value streams

> Control strategies to maximize
revenue/grid benefit

° Assess policy impact on storage

> Develop policy recommendations




