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4 Motivation
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5 I Problem Architecture

Energy management system for minimizing cost of

energy purchased from the grid while balancing net load.
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6 Optimization Formulation

Two-stage optimization:

1) Day-ahead scheduling

2) Real-time dispatch
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10 Ideal Optimization
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11 Ideal Optimization
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12 Ideal Optimization
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BUT... We have uncertainty in
• energy prices,
• load,
• and generation.
Also have different time scales for DA and RT markets. Therefore, consider
a two-stage, stochastic approach with forecasts and probabilistic constraint:
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13 Real-Time Algorithm

ROCEDURE: Each dayiPs

.- Stage 1 (DA):

> Receive/compute hourly DA net load and price forecasts

> Solve DA scheduling optimization

> Bid resulting supply/demand into DA market

). Stage 2 (RT):

For each time step:

> Measure/receive SoC, net load, RT price

> Receive/compute RT net load and price forecasts

> Solve RT dispatch optimization

> Implement charge/dispatch command

End for

END PROCEDURE A} .  

Repeat procedure each day.
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15 Data for March I to January 24
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16 Total cumulative cost from 3/1/2017 — 1/24/2018
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17 Case Study: Probabilistic Constraint
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18 Case Study: Probabilistic Constraint
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19 Conclusions

+Grid conditions are changing - need flexible and controllable resources
and effective energy management systems.

❖Energy storage can effectively reduce costs for entities participating in
markets (even without sophisticated algorithms/forecasts)

+Case study:
❖Energy storage system reduced operating cost
+Simple (suboptimal) stochastic approach performs well

+Conservative bidding in the day-ahead market was advantageous

+ Only considered energy arbitrage; could further reduce costs by participating in
freq. regulation markets
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22 Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Mitigate $79B/yr in commercial

losses from outages

A n
Max demand without storage

Max demand veth storage

Reduce commercial and industrial electrical bills

through demand charge management. 7.5 million U.S.
customers are enrolled in dynamic pricing (EIA 2015)

Regional Spending on T&D Projects Completed by
2020 Heavily Weighted lowards the Rockies

of pr cmtotall I n he. Lackey tossed

Waugh 1030 Is dlttrl0utlon system upirnbos

Reduce $2T in required T&D

upgrades

Balance the variability of 825 GW of new
renewable generation while improving

grid reliability and efficiency.
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23 Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Regional Spending on T&D Projects Completed by
2020 Heavily Weighted lowards the Rockies

t -1177

Tr*

ULTIMATELY...

Can act as a controllable, flexible resource (source and sink)
that can accommodate variability and uncertainty in load,
generation, and prices.

Ali

Reduce commercial and industrial electrical bills

through demand charge management. 7.5 million U.S.
customers are enrolled in dynamic pricing (EIA 2015)

e
u.s. DEPARTMENT OF

Balance the variability of 825 GW of new
renewable generation while improving

grid reliability and efficiency.
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24 Two-Stage Optimization

Day-Ahead Scheduling

Real-Time Dispatch
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25 Two-Stage Optimization

Day-Ahead Scheduling

Real-Time Dispatch
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If normally distributed forecast errors, probabilistic constraint can be written as
deterministic linear inequality constraint. Optimization problems become linear programs.



26 Parameters

Parameter Description Value Units
p Air density 1.2 kg/m3
v Wind turbine cut-in speed 4 m/s
T) Wind turbine cut-out speed 25 m/s
v* Wind turbine rated speed 10 m/s

nw Wind conversion efficiency 0.45 -

r/Pv PV panel efficiency 0.15 -
riconv PV conversion efficiency 0.90 -

71.9 ES storage efficiency 1.00 -
Tic ES charging efficiency 0.85 -

Apv Total area of solar panels 1000 m2

Awind Total swept area of turbine blades 1357 m2

[PES ES power rating 1000 kW
SES ES energy capacity 1000 kWh

so Daily initial SoC sEs/2 kWh
6 Desired fraction of unused SoC 0.1 -
At Real-time optimization time step 5 minutes

ET Real-time optimization horizon 48 -
a Load balancing probability 0.99 -

1 MW

1MWh

4 hour window
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27 Case Study: Day-Ahead Forecasts
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>Hourly load forecast = load in same hour from previous week

>Hourly solar/wind generation forecast = average value in same hour from previous day

>Hourly day-ahead price forecast = day-ahead price in same hour from previous day

>Hourly-averaged real-time price forecast = average real-time price in same hour from
previous day



28 Case Study: Real-Time Forecasts
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29 Case Study: Solution Snapshot
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30 Data for August 6- I 2
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Fig. 22. Load for the week of August 6-12, 2017.
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31 Data for August 6- I 2
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32 Histograms of net load forecasting errors
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Fig. 43. Histogram of the Day-Ahead net load forecasting error
for the hour of 12AM to 1 AM. The normal distribution fit is shown in red.
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33 Why Do We Need Storage?

Storage can provide many grid services:

o Resiliency and reliability

o Transmission and Distribution (T&D) upgrade deferral

o More efficient operation of the generation fleet

o Balance the variability of renewable generation

o Behind the meter savings for commercial and industrial customers

o Ancillary services (frequency regulation, spinning reserve, black start, etc.)

o Peaker plant replacement

o Voltage support



34 Energy Storage Analytics

Equitable Regulatory Environment Thrust Area

Goals: Lower barriers to widespread deployment of energy storage by identifying
new and existing value streams, quantifying the impact of policy on deployment,
and developing new control strategies

Objectives:
o Project case studies

o Tools for storage valuation

O Identify new value streams

o Control strategies to maximize

revenue/grid benefit

o Assess policy impact on storage

o Develop policy recommendations


