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* Noise generated by submarine A can be heard by submarine B via sound
propagation through the water column and the sediments.

Arctic seafloor porosity predicted with geospatial machine learning by the U.S. Naval

aessarchilabdilinelspenalieselitionliea sckeininttes Sound travels through the water and through the sediments. B

s s

N

/ bulk

, modulus
density

ds has d huge Some example values:

g effect on the B _-0.000142 GPa
LGS S e speed of sound, and it B __. =2.2Gpa
* Sound actually travels faster through the sediments than it does through the doesn’t take a lot to B..gimen: = 40 GPa
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Thie;;rs.f;lcoaditionsintheArcticmake research and data acquisition difficult, if not Smearlne B WI” hear Smearlne A via Sound that traVEIS through the Current SONAR a|g0rlthm5
impossible. We are stuck with data sparsity in the Arctic. sediments before it hears the sound through the water column (if sediments do not take gas into
do not contain free gas) ¥ account, because we can’t
* We have very little knowledge on seafloor properties, limiting our ability to o , ’ .
predict SONAR behavior through the seafloor. reliably predict seafloor gas
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eospatial machine learning (GML) can be used to build a system that predicts or forecasts seafloor properties like
we forecast the weather. GML can produce maps of continuous seafloor properties with estimates of uncertainty,
while also integrating physically consistent models. It is superior to traditional interpolation methods.

Geospatial Machine Learning Algorithm
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Based on sparse known
data, and hundreds of
dense calculated predictors,
GML produces continuous
maps of desired seafloor
guantities, such as porosity,
sediment type, total organic
carbon content, etc.

The U.S. Navy surfaces a submarine through the sea ice in the Beaufort Sea as part of the
ICEX exercise that occurs every other year.
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Collect and use all known data on seafloor,
organized as a gridded dataset. Data outside |
of the Arctic can and should be used! Ve

GML produces estimates of
seafloor quantities and
their uncertainty, which is
based on prediction error.
A well sampled parameter
space will reduce
parameter uncertainty.

Feature Selection & Validation
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Uncertainty results can be
used to guide future data
acquisition campaigns.
Increasing observations
where prediction error

Only use the best predictors, based on U.S.NAVAL
individual predictive skill via 10-fold R.ES.EARC| | (uncertainty) is high will
validation. Predictors must perform better L ABORATORY benefit predictive skill
than random noise. globally.
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North Africa is in the magnitude range 3.5 to 3 or lower. (Figure provided by the Center for Monitoring Research)
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