Runtime Polymorphism in
Kokkos Applications

Victor Brunini

Jonathan Clausen, Mark Hoemmen, Alec Kucala,
Christian Trott, Micah Howard

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
lear Security
act DE-NA0003525.

2 | Motivation . I

Arla SPARC I
Expression graph > Goal: solve aerodynamics problems
, : for Sandia (transonic and
1mp}ementat19n t(? ?nable . hypersonic) on ‘leadership’ class |
flexible fully-implicit coupling supercomputers
of different PDEs and material > Solves compressible Navier-Stokes
models selected at runtime equations

> Perfect and reacting gas models

> Laminar and RANS turbulence

Lifear models -> hybrid RANS-LES

System ° Primary discretization is cell-

centered finite volume i

> Research on high-order finite
difference and discontinuous
Galerkin discretizations

> Structured and unstructured grids

31 Options for runtime dispatch on GPU

Use C++ templates to generate different kernels for each
possible combination of element type, material models,
PDE’s to solve and select the appropriate one at runtime
Best possible performance
Very negative impact on compile times for even modest numbers of
combinations — O(Na * Nb * Nc * ...)

May not be viable depending on number of possible combinations to
support

Use standard C++ virtual functions + inheritance as on the

CIML

Requires care to ensure that vtable points to appropriate host or
device functions depending on where the virtual call is going to be
made

Can this achieve acceptable performance on the GPU?

4

Virtual Function Performance on GPU

Benchmark Problem: AXPY over multi-vector

void run_inline(const int n, const double a,

const <double **> & x, const <double **> & y)
{
const int extent = x.extent_int(1);
parallel for(n, KOKKOS LAMBDA(const int i) {
for(int j=0; j < extent; ++j) {
y(i, j) +=a * x(i, J);
s
}
void run_virtual(const int n, const double a,
const <double **> & x, const <double **> & y)
{

* impl = get implementation();
parallel for(n, KOKKOS LAMBDA(const int i)
{ impl->compute(i, a, x, y); });

5

Virtual Function Performance on GPU

5.0
45

0 4.0

©

S 3.5

Q

2 3.0

5 2.5

Z 2.0
1.5
1.0

Virtual Function Overhead

8

16

32

64

Number of Multi-Vectors

Sandybridge CPU

——Volta GPU

128

256

512

Above 32-64 FMA operations per call overhead on

GPU levels off around 10%

6

Virtual Functions in Kokkos Parallel Regions

class

{
public:

KOKKOS_FUNCTION virtual void compute(const int i) = 0;
}s

class In : public

{
public:

KOKKOS_FUNCTION void compute(const int i) override;
}s5

7 | Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel dispatch in
// a GPU build?
void parallel dispatch(* v, const int n)

{
parallel for(n, KOKKOS LAMBDA(const int i) { v->compute(i); });

8 | Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel dispatch in
// a GPU build?
void parallel dispatch(* v, const int n)

{
parallel for(n, KOKKOS LAMBDA(const int i) { v->compute(i); });

}

void ()
{
i
parallel_dispatch(&i, 1000);
}

9 | Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel dispatch in
// a GPU build?
void parallel dispatch(* v, const int n)

{
parallel for(n, KOKKOS LAMBDA(const int i) { v->compute(i); });

void ()
{
1;
paral 1. dispatcn{i. 1000);

10 | Virtual Functions in Kokkos Parallel Regions
* get _implementation()

* p = static_cast«
kokkos malloc<>(sizeof()));
parallel for(1,
KOKKOS _LAMBDA(const int i) { new (p)
fence();
return p;

}

void f()
{

auto 1 = get_implementation();
parallel_dispatch(i, 1000);

}

%> (

OHE N

11 | Virtual Functions in Kokkos Parallel Regions
* get _implementation()

* p = static_cast«
kokkos malloc<>(sizeof()));
parallel for(1,
KOKKOS _LAMBDA(const int i) { new (p)
fence();
return p;

void f() Y 4
auto 1 = get_implementation();
parallel_dispatch(i, 1000);

}

%> (

s 1)

12 | Virtual Functions in Kokkos Parallel Regions
* get _implementation()

* p = static_cast«
kokkos malloc<>(sizeof()));
parallel for(1,
KOKKOS _LAMBDA(const int i) { new (p)
fence();
return p;

}

void f()
{

auto 1 = get_implementation();
parallel_dispatch(i, 1000);
i->compute(0);

}

%> (

OHE N

13 | Virtual Functions in Kokkos Parallel Regions
* get _implementation()

* p = static_cast«
kokkos malloc<>(sizeof()));
parallel for(1,
KOKKOS _LAMBDA(const int i) { new (p)
fence();
return p;

}

void f()
{

auto 1 = get_implementation();
parallel_dispatch(i, 1000);

ey -
1-/_\1» L V\U})

%> (

OHE N

14 | More Generically L] I

template <typename , typename > |
* copy_for_device(const & to_copy)
{
* p = static_castk o | |
kokkos malloc<typename : :memory_space>(sizeof()));
parallel for(RangePolicy<typename ::execution _space>(0, 1),
KOKKOS_LAMBDA(const int i) { new (p) (to_copy); 1});
fence();
return p;

15 | More Generically

template <typename Device, typename Derived>
Derived * copy_for_device(const Derived & to_copy)
{
auto * p = static_cast<Derived *>(
kokkos_malloc<typename Device::memory space>(sizeof(Derived)));
parallel for(RangePolicy<typename Device::execution space>(0, 1),
KOKKOS_LAMBDA(const int i) { new (p) Derived(to _copy); });
fence();
return p;
}

But how to free this object?

16 . More Generically

template <typename , typename >
< 1> copy_for_device(const & to_copy)
{
* p = static_castk o |
kokkos malloc<typename : :memory_space>(sizeof()));
parallel for(RangePolicy<typename ::execution _space>(0, 1),
KOKKOS_LAMBDA(const int i) { new (p) (to_copy); 1});
fence();
return < >(p);

17 | More Generically

camplate <typename , typename >
< 1> copy _for _device(const & to _cor’,
{
* p = static Cwat< o |
kokkos malloc<typename : *n.emory space>(sizeof()));
parallel for(RangePolicy<tvr_iame ::execution _space>(0, 1),
KOKKOS_LAMBDA(cr~_c int i) { new (p) (to_copy); 1});
fence();

returr < >(p);

18 | More Generically L] I

template <typename >

struct

{ I
template <typename T> void operator()(T * ptr)
{

parallel for(RangePolicy<typename ::execution_space>(0, 1),
KOKKOS LAMBDA(const int i) { ptr->~T(); });
kokkos free<typename : :memory_space>(ptr);

Iy

« Alternate implementation: DeviceDeleter stores an enum for device vs
host instead of being a template

19 | More Generically

template <typename , typename red>
< p < Lce>> copy_for_device(const
to_copy)
{
* p = static castk *>(
kokkos malloc<typename : :memory_space>(sizeof(Der d)));
parallel for(RangePolicy<typename ::execution_space>(0, 1),
KOKKOS _LAMBDA(const int i) { new (p) I(to_copy); });
fence();
return < " r< >>(p);

20

View Ownership & Device Objects

class : public

{

public:
KOKKOS_FUNCTION ~ () = default;
KOKKOS_FUNCTION void compute(const int i) override

{v(i) +=1; }

KOKKOS_FUNCTION (const &) = default;

<double *> v;

Ik

void f()
{
auto 1 = copy_for_device< 5
{ <double *>(“my_view”, 1000)});
parallel dispatch(i.get(), 1000);

21

View Ownership & Device Objects

class : public

{

public:
KOKKOS_FUNCTION ~ () = default;
KOKKOS_FUNCTION void compute(const int i) override

{v(i) +=1; }

KOKKOS_FUNCTION (const &) = default;

<double *> v;

Ik

void f()
{
auto 1 = Zorv for devicec 5
{ <double . “ - lcw , 1000)});
parallel Ai--__ i1.get(), 1000);

22

View Ownership & Device Objects

template <typename T, typename >
class
{
public:
// Interface mimics
private:
< 5 < >> device_ptr;
< > host_ptr;
¥
template <typename , typename d>
< 5 < >> copy_for_device(const
& to _copy)
{
* p = static castk 5
kokkos malloc<typename : :memory space>(sizeof()));
parallel for(RangePolicy<typename ::execution _space>(0, 1),
KOKKOS LAMBDA(const int i) { new (p) (to_copy); });
fence();
return < , < >>(p);

23 | Additional Lessons Learned

Must enable relocatable device code

nvlink i1s very picky about libraries appearing on the link line
multiple times, nvcc_wrapper helps

Kernels that call non-inline functions must assume maximum
register usage, -maxrregcount compiler flag can be a useful
optimization tool when occupancy-limited

Short kernel launches & Cuda allocations are expensive

Constructing many polymorphic device objects per-timestep
is problematic, make persistent if possible

24 | PERFORMANCE ANALYSIS: INTRODUCTION

Performance analysis on 3 primary architecture types:

Intel Xeon systems

Haswell nodes — ATS-1/HSW (‘advanced technology system’, Trinity)
Broadwell nodes — CTS-1/BDW (‘commodity technology system’)

Intel Xeon Phi

Knight’s Landing nodes — ATS-1/KNL (Trinity)

Nvidia GPU

Broadwell/Pascal100 nodes — CTS-1/P100 (GPU testbed)
Power8/Pascal100 nodes — ATS-2/P100 (Sierra eatly-access testbed)
Powetr9/Voltal00 nodes — ATS-2/V100 (Sierra look-alike testbed)

Case:
Perfect gas: ~Mach 6 flow around a sphere-cone geometry

Reacting gas: ~Mach 9 flow around same geometry with 5-species air model

Strong scaling: 32 M cell grid

25 | PERFECT GAS: STRONG SCALING

Compute Residual: Interior Terms

|
(Flux & Jacobian computatlon) *=% GIS<1(BOW; | thread
@@ ATS-1/HSW, 1 thread

------ KNL"’40% SlOwer than: HSW/BDWH ATS-1/HSW, 2 threads [
: : Why? > compute- bound BHE ATS-1/KNL, 4 threads

; -> vectonzatlon needed |99 ATSUKNL 8 threads
"""""""""""""""""""""""""""""" poooo1%e—% ATS-1/KNL, 16 threads

V-V CTS-1/P100
: | : ; V-V ATS-2/P100
—1—055ec V-V ATS-2/V100 i

P100: 2x f | : ;
thg,? HS)\(N /a BStD?,; KNL::effectively thread scales

—2—0-.-25-sec ----------- g ;... N (trading MP ranks for threads)

log, Time per Time Step [s]

log2 scale & lower is faster

V1OO 3-3.5x faster
than HSW/ BDW

I
l \ l \
16M cells/node Number of Compute Nodes or GPUs 250k cells/node

-or- -or-
500k cells/MPI rank 8k cells/MPI rank
(@32 ranks/node) & celst noae ar LPU (@ 32 ranks/node)

26

PERFECT GAS: STRONG SCALING (cont'd)

0
o
@)
)
n
w
E
-
—_
o
o
o
E
|_
N
1)
2

Total Problem Solve

(total time step tlme) %% CTS-1/BDW, 1 thread
®@® ATS-1/HSW, 1 thread

AA ATS-1/HSW, 2 threads
Bl ATS-1/KNL, 4 threads
@@ ATS-1/KNL, 8 threads ||
Y% ATS-1/KNL, 16 threads
V-V CTS-1/P100
VYV ATS-2/P100

V-V ATS-2/V100

- bou.nd. .solves. offset by
sloWer compute boun'd

GPU faster compute bound ;
kernels offset by unoptimized GPU
solves and lmmature MPI lmpl '

™ % ,,;L

Number of Compute Nodes or GPUs

27

Questions!?

28

PERFECT GAS: STRONG SCALING (cont'd)

Linear Equation Solver

(5x5 blocks) ﬁ
""""""'”'"'KN’L'"supé'r”l’ihéaf'spéédup """" AA
Why7 -> memory bound .

K

v

\ an 4

\ an 4

|

CTS-1/BDW, 1 thread
ATS-1/HSW, 1 thread ||
ATS-1/HSW, 2 threads
ATS-1/KNL, 4 threads
ATS-1/KNL, 8 threads ||
ATS-1/KNL, 16 threads
CTS-1/P100

ATS-2/P100

ATS-2/V100

log2 scale & lower is faster
log, Time per Time Step [s]

KNL all- HBM -> 2x
speedup over HSW/ BDW

0. 0625 sec - ---

Number of Compute Nodes or GPUs

-Or-
500k cells/MPI rank
(@32 ranks/node)

—51-0. 03125 = o T e Rt N]
’}, b‘ Cb \/b ,,)’1/ bv “,ﬁb
'16M cells/node \ '250k cells/node\

8k cells/MPI rank
2M cells/node or GPU (@ 32 ranks/node)

or

29 | PERFECT GAS: STRONG SCALING (cont'd)

Post Solve Update

; ; I I

At S (computation + MPI'comm;) {* * CT5-1/BDW, 1 thread H
~ : : : ®@® ATS-1/HSW, 1 thread

: : A—A ATS-1/HSW, 2 threads

-l ATS-1/KNL, 4 threads

@@ ATS-1/KNL, 8 threads [

w—* ATS-1/KNL, 16 threads

V-V CTS-1/P100

V-V ATS-2/P100

VYV ATS-2/V100

KNL ~50% s:lower
than HSW/ BDW

0
o
@
)
n
@
E
|_
—
@
Q
w
E
|_

[\
20
=g

worse than KNL

------------------ ----------- V 100 1mmature MP}--- ----------------- :
5 ' runtlme for thlS hardware '
(true for all our GPU systems)

Number of Compute Nodes or GPUs

