
Runtime Polymorphism in
Kokkos Applications

PRESENTED BY

Victor Brunini

Jonathan Clausen, Mark Hoemmen, Alec Kucala,
Christian Trott, Micah Howard

Sandia National Laboratories is a multirnission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2019-0279PE

2 Motivation

Aria

Expression graph
implementation to enable
flexible fully-implicit coupling
of different PDEs and material
models selected at runtime

Linear
System

■

SPARC
O Goal: solve aerodynamics problems
for Sandia (transonic and
hypersonic) on 'leadership' class
supercomputers

o Solves compressible Navier-Stokes
equations

O Perfect and reacting gas models

O Laminar and RANS turbulence
models -> hybrid RANS-LES

O Primary discretization is cell-
centered finite volume

Research on high-order finite
difference and discontinuous
Galerkin discretizations

o Structured and unstructured grids

3 Options for runtime dispatch on GPU

1. Use C++ templates to generate different kernels for each
possible combination of element type, material models,
PDE's to solve and select the appropriate one at runtime
• Best possible performance

• Very negative impact on compile times for even modest numbers of
combinations — O(Na * Nb * Nc * ...)

• May not be viable depending on number of possible combinations to
support

Use standard C++ virtual functions + inheritance as on the
CPU

Requires care to ensure that vtable points to appropriate host or
device functions depending on where the virtual call is going to be
made

O Can this achieve acceptable performance on the GPU?

•

4 Virtual Function Performance on GPU

Benchmark Problem: AXPY over multi-vector

void run inline(const int n, const double a,

const View<double **> & x, const View<doubli

{

const int extent = x.extent_int(1);

parallel_for(n, KOKKOS_LAMBDA(const int i) {

for(int j=0; j < extent; ++j) {

Y(il j) += a * x(i, j);

}});

}
voia run virtual(Lonst int n, const double a,

const Viek<double **> & x, const View<doubl

{

VirtualInterface * impl = get_implementation();

parallel_for(n, KOKKOS_LAMBDA(const int i)

{ impl->compute(i, a, x, y); });

}

•

5 Virtual Function Performance on GPU

5.0

4.5

.0 4.0
4J
(t1 3• 5ce

'3) •3 0E
"47' 2• 5c
D
ce 2.0

1.5

1.0

Virtual Function Overhead

\
1 2 4 8 16 32 64 128 256 512

Number of Multi-Vectors

Sandybridge CPU Volta GPU

Above 32-64 FMA operations per call overhead on
GPU levels off around 10%

•

6 Virtual Functions in Kokkos Parallel Regions

class Virtualinterfac-

{

public:

KOKKOS_FUNCTION virtual void

};

compute(const int i) = 0;

class Implementation : public VirtualInterface

{

public:

KOKKOS_FUNCTION void compute(7onst int i) override;

};

•

7 Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel_dispatch in

// a GPU build?

void parallel_dispatch(VirtualInterface * v, const int n)

{

parallel_for(n, KOKKOS_LAMBDA(const ir' i) { v->compute(i); });

}

•

8 Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel_dispatch in

// a GPU build?

void parallel_dispatch(VirtualInterface * v, const int n)

{

parallel_for(n, KOKKOS_LAMBDA(const ir' i) { v->compute(i); });

}

void f()

{
Imnlementli-inn i;

parallel_dispatch(&i, 1000);

}

•

9 Virtual Functions in Kokkos Parallel Regions

// How do we construct Implementation to call parallel_dispatch in

// a GPU build?

void parallel_dispatch(VirtualInterface * v, const int n)

{

parallel_for(n, KOKKOS_LAMBDA(const ir' i) { v->compute(i); });

}

',(lid f()

{
Imnlicimpintc,L4 rs. 1;

paral':1 dispatch 4. 1000);

1

•

10 Virtual Functions in Kokkos Parallel Regions

VirtualInterface * get_implementation()

{

Implementation * p = static_cast<Implementation

kokkos_malloc<>(sizeof(Implementation)));

parallel_for(1,

KOKKOS_LAMBDA(const int i) { new (p) Implementation(); });

fence();

return p;

}

void f()

{
autc i = get_implementation();

parallel_dispatch(i, 1000);

}

* > (

•

11 Virtual Functions in Kokkos Parallel Regions

VirtualInterface * get_implementation()

{

Implementation * p = static_cast<Implementation

kokkos_malloc<>(sizeof(Implementation)));

parallel_for(1,

KOKKOS_LAMBDA(const int i) { new (p) Implementation(); });

fence();

return p;

}

void f()

{

autc i = get_implementation();

parallel_dispatch(i, 1000);

}

* > (

Success

■

12 Virtual Functions in Kokkos Parallel Regions

VirtualInterface * get_implementation()

{

Implementation * p = static_cast<Implementation

kokkos_malloc<>(sizeof(Implementation)));

parallel_for(1,

KOKKOS_LAMBDA(const int i) { new (p) Implementation(); });

fence();

return p;

}

void f()

{
autc i = get_implementation();

parallel_dispatch(i, 1000);

i->compute(0);

}

* > (

•

13 Virtual Functions in Kokkos Parallel Regions

VirtualInterface * get_implementation()

{

Implementation * p = static_cast<Implementation

kokkos_malloc<>(sizeof(Implementation)));

parallel_for(1,

KOKKOS_LAMBDA(const int i) { new (p) Implementation(); });

fence();

return p;

}

void f()

{

autc i = get_implementation();

parallel_dispatch(i, 1000);

}

*>(

•

14 More Generically

template <typename Device, typename Derived>

Derived * copy_for_device(const Derived & to_copy)

{

auto * p = static_cast<Derived *>(

kokkos_malloc<typename Devic-::memory_space>(sizeof(Derived)));

parallel_for(RangePolicy<typename Device::execution_space>(0, 1),

KOKKOS_LAMBDA(:onst int i) { new (p) Derived(to_copy); });

fence();

return p;

}

15 More Generically

template <typename Device, typename Derived>

Derived * copy_for_device(const Derived & to_copy)

{

}

auto * p = static_cast<Derived *>(

kokkos_malloc<typename Devic-::memory_space>(sizeof(Derived)));

parallel_for(RangePolicy<typename Device::execution_space>(0, 1),

KOKKOS_LAMBDA(:onst int i) { new (p) Derived(to_copy); });

fence();

return p;

But how to free this object?

16 More Generically

template <typename Device, typename Derived>

unique_ptr<Derived> copy_for_device(const Derived & to_copy)

{

aut * p = static_cast<Derived *>(

kokkos_malloc<typename Device:memory_space>(sizeof(Derived)));

parallel_for(RangePolicy<typename Device::execution_space>(0, 1),

KOKKOS_LAMBDA(--,t i) { new (p) Derive (to_copy); });

fence();

return unique_ptr<Derived>(p);

}

•

17 More Generically

':nmplate <typename Device, typename Derived>

unique_v 4-r<Derived> copy_for_device(const Derived & to_com:,

{

aut * p = static_c„-t<Derived *>(

kokkos malloc<typename 71mvice7mory_space>(sizeof(Derived)));

parallel_for(RangePolicy<tv7_11ame :Icivice::execution_space>(0, 1),

KOKKOS_LAMBDA(c0-_,L int i) { new (p) .?ive (to_copy); });

fence();

returr unique_ptr<Derived>(p);

•

18 More Generically

template <typename Device>

struct DeviceDeleter

{

template <typename T> void operator()(T * ptr)

{

}

};

parallel_for(RangePolicy<typename nnwirr::execution_space>(0, 1),

KOKKOS LAMBDA(const int i) { ptr->—T(); });

kokkos free<typename DevicP::memory_space>(ptr);

• Alternate implementation: DeviceDeleter stores an enum for device vs
host instead of being a template

•

19 More Generically

template <typename Device, typename Derive >

unique_ptr<Derived, DeviceDeleter<Device>> copy_for_device(const Derived &

to copy)

{

aut * p = static_cast<Deriveci *>(

kokkos malloc<typename Devic ::memory_space>(sizeof(Derived)));

parallel_for(Rangepolicy<typename Device::execution_space>(0, 1),

KOKKOS_LAMBDA(onst int i) { new (p) Derive (to_copy); });

fence();

return unique_ptr<Derived, DeviceDeleter<Device>>(p);

}

20 View Ownership & Device Objects

class ImplWithView : public VirtualInterface

{

public:

KOKKOS_FUNCTION —TmplWithView() = default;

KOKKOS_FUNCTION void compute(const int i) override

{ v(i) += 1; }

KOKKOS_FUNCTION ImplWithView(const ImplWithView &) = default;

vJ.e.<double *> v;

} ;

void f()

{

auto i = copy_for_device< na-Fnull-Pvarnfinnqrnral TmplWithView>(

*>("my_view", 1000)1);

parallel_dispatch(i.get(), 1000);

21 View Ownership & Device Objects

class ImplWithView : public VirtualInterface

{

public:

KOKKOS_FUNCTION —TmplWithView() = default;

KOKKOS_FUNCTION void compute(const int i) override

{ v(i) += 1; }

KOKKOS_FUNCTION ImplWithView(const ImplWithView &) = default;

vJ.e.<double *> v;

} ;

void f()

{

auto i = +or device<DefaultExecutionSnnra,

<doubie :cw 1 1000)1);

paralleluki.get(), 1000);

}

vinw'thView>(

22 View Ownership & Device Objects

template <typename T, typename Device>

class DeviceUniquePtr

{

public:

// Interface mimics unique_ptr

private:

unique_ptr<Derivorl, nowironeleter<Device>> device_ptr;

unique_ptr<Derivt > host_ptr;

};

template <typename Device, typename Derive >

DeviceUniquePtr<Derived„ DeviceDeleter<Devic » copy_for_device(const Derived

& to_copy)

{

(mit' * p = static_cast<Derived *>(

kokkos mallocOwpename Devic ::memory_space>(sizeof(nerive)));

parallel_for(RangePolicy<typename uevice::execution_space>(0, 1),

KOKKOS_LAMBDA(const int i) { new (p) DeriveL(to_copy), });

fence();

return DeviceUniquePtr<Derived„ DeviceDeleter<Devic->>(p);

23 Additional Lessons Learned

Must enable relocatable device code
- nvlink is very picky about libraries appearing on the link line
multiple times, nvcc_wrapper helps

° Kernels that call non-inline functions must assume maximum
register usage, -maxrregcount compiler flag can be a useful
optimization tool when occupancy-limited

Short kernel launches & Cuda allocations are expensive
°Constructing many polymorphic device objects per-timestep
is problematic, make persistent if possible

24 PERFORMANCE ANALYSIS: INTRODUCTION

Performance analysis on 3 primary architecture types:

O Intel Xeon systems
. Haswell nodes - ATS-1/HSW (`advanced technology system', Trinity)
. Broadwell nodes - CTS-1/BDW (`commodity technology system')

o Intel Xeon Phi
. Knight's Landing nodes - ATS-1/KNL (Trinity)

o Nvidia GPU
. Broadwell/Pascal100 nodes - CTS-1/P100 (GPU testbed)
. Power8/Pascal100 nodes - ATS-2/P100 (Sierra early-access testbed)
. Power9/Volta100 nodes - ATS-2/V100 (Sierra look-alike testbed)

Case:

O Perfect gas: —Mach 6 flow around a sphere-cone geometry

Reacting gas: —Mach 9 flow around same geometry with 5-species air model

Strong scaling: 32 M cell grid

25 PERFECT GAS: RONG SCALING

o

sec

.5 sec

Compute Residual: Interior Terms

(Flux Et Jacobian computation)

KNL:-40% slower than HSW/BDW
Why? -> compute-bound

-> vectorization needed

P100: 2x faster
than HSW/BDW

0.25 sec

-0.125 sec

0.0625 sec

-0.03125 sec

ti

16M cells/node
-or-

500k cells/MPI rank
(@32 ranks/node)

V100: 3-3.5x faster
than HSW/BDW

• * CTS-1/BDW, 1 thread

•-• ATS-1/HSW, 1 thread
A-A ATS-1/HSW, 2 threads
M—M ATS-1/KNL, 4 threads

O ATS-1/KNL, 8 threads

* * ATS-1/KNL, 16 threads

✓ 0 CTS-1/P100
ATS-2/P100

•—• ATS-2/V100

KNL: effectively thread scales
(trading MPI ranks for threads)-

Number of Compute Nodes or GPUs

2M cells/node or GPU

(0°`
1
250k cells/node

l

-or-
8k cells/MPI rank
(@ 32 ranks/node)

26 PERFECT GAS: KLANL3 SCALING (cont'd)

lo
g2
 T
i
m
e
 p
e
r
 T
i
m
e
 S
t
e
p
 [
s
]

Total Problem Solve

total time step time)

All end

KNL: faster memory-
bound solves offset by
slower compute-bound
kernels -> SIMD is important

up about the same!

GPU: faster compute-bound
kernels offset by unoptimized GPU
solves and immature MPI impl.
-> to be fair; there is a lot of potential here

* CTS-1/BDW, 1 thread

IVO ATS-1/HSW, 1 thread

A-A ATS-1/HSW, 2 threads
M—M ATS-1/KNL, 4 threads

O CO ATS-1/KNL, 8 threads

* * ATS-1/KNL, 16 threads

CTS-1/P100

• ATS-2/P100

•—• ATS-2N100

Number of Compute Nodes or GPUs

•

27 Questions? •

28 PERFECT GAS: STRONG SCALING (cont'd)
o
•

sc

a
e
 .
 o
w
e
r
 i
s

as
te

 1

Linear Equation Solver

- 2 sec

- 1 sec

0.5 sec

0.25 sec

0 125 sec

-0.0625 sec

0.03125 sec

(5x5 blocks)

KNL: super-linear speedup
Why? -> memory bound
transition from DDR->HBM

• CTS-1/BDW, 1 thread

•—• ATS-1/HSW, 1 thread

A-A ATS-1/HSW, 2 threads
ATS-1/KNL, 4 threads

ATS-1/KNL, 8 threads

• ATS-1/KNL, 16 threads

• CTS-1/P100

•—• ATS-2/P100

•—• ATS-2N100

GPU: nitial implementation
-> oom for improvement

KNL: all-HBM -> 2x
speedup over HSW/BDW

ti

•

16M cells/node Number of Compute Nodes or GPUs
1
250k cells/node

l

-or- -or-
500k cells/MPI rank
(@32 ranks/node) 2M cells/node or GPU

8k cells/MPI rank
(@ 32 ranks/node)

29 PERFECT GAS: STRONG SCALING (cont'd)

lo
g2
 T
i
m
e
 p
e
r
 T
i
m
e
 S
t
e
p
 [
s
]

Post Solve Update

KNL: -50% slower
than HSW BDW

 (computation

P100: no better or
worse than KNL

+ MP1com

 V100: immature MPI

m. • CTS-1/BDW, 1 thread

•—• ATS-1/HSW, 1 thread

A-A ATS-1/HSW, 2 threads
ATS-1/KNL, 4 threads

ATS-1/KNL, 8 threads

• ATS-1/KNL, 16 threads

• CTS-1/P100

•—• ATS-2/P100

•—• ATS-2N100

runtime for this hardware
(true for all our GPU systems)

Number of Compute Nodes or GPUs

•

