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Motivation

Qubit Challenges:

e Scalability

* Initialization

 Control

* Coherence Time (Relative)
» Readout

Challenges Limiting Fidelity:

Cryogenic Operation

Small Signal

Noise
Parasitic Capacitance

Silicon Spin

{ @00 nm

— tmeas

error rate = 1 — e( Ty ) ~ tmeas/ T1

Goal: Increase readout fidelity using

heterojunction-bipolar-transistor (HBT) circuits.
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Silicon Metal-Oxide-Semiconductor (MOS) Devices Fabricated at Sandia
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Dot-Donor System

Side View
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Dot-Donor System

Side View
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Single Electron Transistor (SET)

Top View
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Coulomb Blockade of SET
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Coulomb Blockade of SET
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Charge Sensing

Source




Charge Sensing: Donor lonization
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Charge Sensing: Donor lonization

Can sense donor or QD occupancy.
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Charge Sensing: Stability Diagrams




Singlet-Triplet Qubit
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QD Gate Voltage
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Singlet-Triplet Qubit

QD Gate Voltage

Donor Gate Voltage

Spin and charge degrees of freedom.

Two electrons - singlets and triplets.

€ (detuning)



Singlet-Triplet Qubit: Operation

>

HST = J(e)67 + AE;(€)dx

QD Gate Voltage

Donor Gate Voltage

Exchange term depends strongly on detuning.

AE, due to contact hyperfine.

€ (detuning)



Singlet-Triplet Qubit: Operation ] > AE,

ﬁST = J(€)6 + AE;(€)0x
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Singlet-Triplet Qubit: Operation

QD Gate Voltage




Singlet-Triplet Qubit: Pauli Spin Blockade Readout
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Singlet-Triplet Qubit: Latched Charge Readout
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Singlet-Triplet Qubit: Latched Charge Readout

Movement
of
Charge

Current

Increase BW and SNR - Readout fast relative to T,

—tmeas)

error rate =1 — e( T, ) = tyeas/T1

Goal: Increase readout
fidelity using

heterojunction-bipolar-

Time transistor (HBT) circuits.




Amplification Background + Results



Basic Measurement Setup
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Basic Measurement Setup

Two Limitations:

1. System introduces relatively large
amounts of noise.

2. Current-to-voltage amplifier gain limits
bandwidth.

AC/DC
Source

300K

Dilution Refrigerator

TIA

Gain ++++
BW +




Cryogenic Amplification

Advantages:

1. Cryogenic amplifier increases
signal before system noise is
introduced.

* Increases Signal-to-Noise.

2. Lower current-to-voltage
amplifier gain.
* Increases bandwidth.

AC/DC
Source

300 K

Dilution Refrigerator

~100 pA

TIA
Gain ++
BW ++

~10 nA

| ~ 10_0>pA
\ SET |

Cryogenic
Amplifier

Gain ++




Cryogenic Amplification

Advantages:

1. Cryogenic amplifier increases
signal before system noise is
introduced.

* Increases Signal-to-Noise.

2. Lower current-to-voltage
amplifier gain.
* Increases bandwidth.
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BJT Operation

Emitter Base Collector Emitter Base Collector
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BJT vs. HBT HBT Advantages:
1. Faster frequency response.
2. Higher base doping.

3. Higher gain.
BJT 4. Cryogenic operation.
Emitter Base Collector Emitter Base Collector
M/l electrons
electrons EC _______ | electrons EC

Si Si Si Si SiGe Si
(Less Ge) (More Ge)



HBT DC Characterization

HBTs initially characterized
at 4 K.

80%+ of HBTs operate at 4 K.

20% of HBTs operate at 4 K
with high current gain and
low bias current.

HBTs operate similarly at 4 K
and 60 mK (tunneling
transport mechanism).

Keithley
2400 SMU

Keithley
2400 SMU

Current Gain (A/A)
3. 3 3

10*

e 60 mK ‘

Current Gain (A/A)
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CB-HBT
i 300K 4+ 60mK """ "T7° :
Two Circuits Characterized: - VA TIA :: :
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CB-HBT Noise Model

Noise model generated Circuit Schematic Q
using Norton equivalent 100 = e
circuit and BJT small-signal N ‘ Collector Shot o &
x I Fridge Noise ‘
gain model. S 10 |} Base Shot g O g K.
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AC-HBT Noise Model

Noise model generated

using Norton equivalent

[ — Data
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Amplifier Performance Comparison

350 T T s Pt
S| —e—CB-HBT
——AC-HBT 300 | —o— AC-HBT

Gain

e

P —a - |

0.1 1 10 100 01 1 10 100 50
Power (W) Power (W)

10% 102 107 10°  10° 102
Power (W)
Gain of CB-HBT is greater at lower powers.

Minimum noise of CB-HBT is lower at lower powers.

Electron temperatures are comparable (160 — 200 mK).



Single-Shot Readout
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Single-Shot Readout Comparison End of Delay Time  End of Integration Time

A AL .
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SNR extracted from histograms for
different delay and integration times.

White dashed line shows minimum total
time for maximum SNR. AC-HBT
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AC-HBT has horizontal dashed line due to 10
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Conclusion

AC-HBT SNR scaled by sensitivity of CB-HBT SET
shows converging performance.

Both circuits achieve SNR > 7 and bit error rate < CB-HBT AC-HBT
103 in times less than 10 ps.

CB-HBT readout is 10 times faster for same SNR

than previous high fidelity result [Harvey-Collard
2018].

In general, CB-HBT is lower power and AC-HBT

has higher bandwidth.
~ ACHBT  CB-HBT —e— CB-HBT
Input Noise 26 fA/VHz 16 fA/VHz ~——8— AC-HBT
. - == AC Scaled
-3 dB Bandwidth 650 kHz 20 kHz
Power 8.4 pW 800 nW 5 1 0 1 5

e  Temperature 160 - 200 mK 160 - 200 mK

trotar (H#S)
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Cryogenic Preamplification Using a Heterojunction Bipolar Transistor (HBT) T = 4 K

M.J. Curry et al., Applied Physics Letters 106 203505 (2015)



RTS Measurements With HBT Inline In Dilution Refrigerator T = 15 mK
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Time-Domain Single-Shot Readout: State of the Art

Charge _ 1 _ Tint ( e )
Sensitivity ~ (SNR)-vB SNR \VHz
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HBT DC Characterization Circuit

HBTs are characterized at 4 K using the circuit shown to the right.

Required instruments: Two source-measure units (SMUs) (e.g. Keithley
2400) and one DC power supply (e.g. SIM928 battery box).

The two SMUs measure the base and collector current.

The DC power supply biases the base-emitter and collector-emitter
junctions of the HBT.

The unity-gain crossover point of the HBTs is usually between V =-1.02 V
and V; =-1.03 V, so the measurements usually begin at V¢ =-1V to capture
some sub-unity behavior.

The current gain of the HBTs usually saturates or is in the thousands when
Ve =-1.07 V. The measurements usually end at this emitter bias point.

Keithley
2400 SMU

Keithley
2400 SMU
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HBT Characterization Data

Emitter bias (V) is the only parameter swept for
a given HBT characterization.

The parameters measured during the sweep
should be:

* Emitter bias voltage

* Base current

* Collector current

The parameters calculated during/after the
sweep should be:

* Emitter current (I + 1)

* DC current gain (I/1g)

Keithley
2400 SMU

Keithley
2400 SMU
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HBT Characterization Data | HBT6
—~HBT 8

Plotted to the right is DC current gain vs. base
current for nine HBTs.

RN
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—HBT 14
—HBT 18
—HBT 19

100

HBTs are selected for use in the non-linear
amplification circuit based on how high their
current gain is at two base current points: I =
100 pA and Ig = 1000 pA (marked by black
dashed lines).

—HBT 20

Some selection examples:

HBT 10 has the lowest current gain at I; = 1000
pA, but it has much higher current gain than
HBT 18 at Iz = 100 pA, so HBT 10 is selected over
HBT 18.

DC Current Gain (A/A)
=

HBT 19 is a top-performer with relatively high
current gain at both base current points and a 1

smooth curve in between. 10 100 1000
Base Current (pA)




