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Motivation Silicon Spin

Qubit Challenges:

• Scalability
• Initialization
• Control
• Coherence Time (Relative)
> Readout

Challenges Limiting Fidelity:

• Cryogenic Operation
• Small Signal

• Noise
• Parasitic Capacitance

(—fracas 
error rate = 1 — e T1 ) '`..-- tmeas/Ti

Goal: Increase readout fidelity using
heterojunction-bipolar-transistor (HBT) circuits.
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Dot-Donor System
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Single Electron Transistor (SET)

Top View



Coulomb Blockade of SET
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Coulomb Blockade of SET
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Charge Sensing
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Charge Sensing: Donor lonization
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Charge Sensing: Donor lonization
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Charge Sensing: Stability Diagrams
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Singlet-Triplet Qubit

Donor Gate Voltage



Singlet-Triplet Qubit
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Donor Gate Voltage

Spin and charge degrees of freedom.

Two electrons 4 singlets and triplets.

E (detuning)



Singlet-Triplet Qubit: Operation

HST = J(E)11Z + AEz(Ercix

Donor Gate Voltage

Exchange term depends strongly on detuning.

AEz due to contact hyperfine.

E (detuning)



Singlet-Triplet Qubit: Operation

HST = J(E)6Z + AEz(E)ax

Donor Gate Voltage
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Singlet-Triplet Qubit: Operation
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Singlet-Triplet Qubit: Pauli Spin Blockade Readout
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Singlet-Triplet Qubit: Latched Charge Readout
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Singlet-Triplet Qubit: Latched Charge Readout
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Goal: Increase readout
fidelity using

heterojunction-bipolar-

transistor (HBT) circuits.
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Basic Measurement Setup
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Basic Measurement Setup

Two Limitations:

1. System introduces relatively large
amounts of noise.

2. Current-to-voltage amplifier gain limits

ba ndwidth.
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Cryogenic Amplification

Advantages:

1. Cryogenic amplifier increases
signal before system noise is

introduced.
• Increases Signal-to-Noise.

2. Lower current-to-voltage
amplifier gain.

• Increases bandwidth.
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Cryogenic Amplification

Advantages:

1. Cryogenic amplifier increases
signal before system noise is

introduced.
• Increases Signal-to-Noise.

2. Lower current-to-voltage
amplifier gain.

• Increases bandwidth.
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BJT Operation

Base-Emitter
forward biased.

Collector-Base
reverse biased.
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BJT vs. HBT

BJT

Emitter Base

electrons ..0,s-

 ...•,* holes

HBT Advantages:

1. Faster frequency response.
2. Higher base doping.

3. Higher gain.
4. Cryogenic operation.
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HBT DC Characterization

HBTs initially characterized

at 4 K.

80%+ of HBTs operate at 4 K.

20% of HBTs operate at 4 K

with high current gain and

low bias current.

HBTs operate similarly at 4 K

and 60 mK (tunneling

transport mechanism).
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HBT Amplifier Circuits

Two Circuits Characterized:

Current-Biased HBT Circuit

(CB-HBT).

AC-Coupled HBT Circuit (AC-

HBT).

Additional elements for AC-

HBT shown with blue

shading.

AC coupling motivated by

Lisa's HEMT work [Tracy, et.

al. APL 2016].

5 mm

CB-HBT

AC-HBT



SET Biasing Difference

Coulomb blockade peak

shown for either circuit

(normalized current).

CB-HBT peak does not go

to zero current.

AC-HBT peak behavior is

similar to voltage-biased

SET peak.
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CB-HBT Noise Model

Noise model generated

using Norton equivalent
circuit and BJT small-signal

gain model.

Noise measured at — 0_ 7 kHz. 1 
•

l•—•—•—a-

Base shot noise dominates

output noise (rsET = 3 MO).
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AC-HBT Noise Model

Noise model generated

using Norton equivalent 100
circuit and BJT small-signal -f.i'
gain model. 1 10'->

<
Coupling capacitor treated 0_ 1
as short for noise CD
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o
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Amplifier Performance Comparison

CB-HBT
AC-HBT
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Single-Shot Readout
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Single-Shot Readout Comparison

SNR extracted from histograms for
different delay and integration times.

White dashed line shows minimum total

time for maximum SNR.

AC-HBT has horizontal dashed line due to

faster response.
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Conclusion

AC-H BT SNR scaled by sensitivity of CB-H BT SET

shows converging performance.

Both circuits achieve SNR > 7 and bit error rate <

10-3 in times less than 10 lis.

CB-HBT readout is 10 times faster for same SNR

than previous high fidelity result [Harvey-Collard

2018].

In general, CB-HBT is lower power and AC-HBT

has higher bandwidth.

-0 AC-HBT CB-HBT

Input Noise 26 fA/1/Hz 16 fAh/Hz

-3 dB Bandwidth 650 kHz 20 kHz

Power 8.4 [INA/ 800 nW

e- Temperature 160 - 200 mK 160 - 200 mK

15

1
CC

0

z
w

5

0

CB-HBT

5 10
t
Total 

GIS)

AC-HBT

15



Impact and Future Direction
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Cryogenic Preamplification Using a Heterojunction Bipolar Transistor (HBT)
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RTS Measurements With HBT lnline In Dilution Refrigerator T = 15 mK
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Time-Domain Single-Shot Readout: State of the Art
Sensitivity — (SNR) - \IR SNR V‘11--V
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HBT DC Characterization Circuit

HBTs are characterized at 4 K using the circuit shown to the right.

Required instruments: Two source-measure units (SMUs) (e.g. Keithley
2400) and one DC power supply (e.g. SIM928 battery box).

The two SMUs measure the base and collector current.

The DC power supply biases the base-emitter and collector-emitter

junctions of the HBT.

The unity-gain crossover point of the HBTs is usually between VE = -1.02 V

and VE = -1.03 V, so the measurements usually begin at VE = -1 V to capture
some sub-unity behavior.

The current gain of the HBTs usually saturates or is in the thousands when
VE = -1.07 V. The measurements usually end at this emitter bias point.

Keithley
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HBT Characterization Data

Emitter bias (VE) is the only parameter swept for
a given HBT characterization.

The parameters measured during the sweep

should be:

• Emitter bias voltage
• Base current

• Collector current

The parameters calculated during/after the

sweep should be:
• Emitter current (lc + lB)

• DC current gain (lc/IB)

Keithley
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Keithley

2400 SMU

I rB 1
.0. i i

i
I

4.4.1.V II E I
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HBT Characterization Data

Plotted to the right is DC current gain vs. base
current for nine HBTs.

HBTs are selected for use in the non-linear

amplification circuit based on how high their

current gain is at two base current points: I B =
100 pA and I B = 1000 pA (marked by black

dashed lines).

Some selection examples:

HBT 10 has the lowest current gain at I B = 1000

pA, but it has much higher current gain than
HBT 18 at I B = 100 pA, so HBT 10 is selected over

HBT 18.

HBT 19 is a top-performer with relatively high

current gain at both base current points and a
smooth curve in between.

---011300

-HBT 6
-HBT 8
• HBT 10
-HBT 14
-HBT 18
-HBT 19
-HBT 20
-HBT 23
- HBT 24

10 100
Base Current (pA)
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