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Methane is a potent GHG
Anthropogenic sources are ~70% of current total
Wetlands account for ~25% of total emissions
Coal/Oil/Natural gas are ~30% of Anthropogenic
Short atmospheric lifetime: ~12 yrs (>1000 years
for CO,)
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Methane continues to follow historical growth trend
Causes of 2000-2008 pause are under debate
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Introduction

e 2015 Paris Climate Change Conference (COP21) signatories
set goals: keep global temperature increase well below 2 °C
above pre-industrial levels.

U.S. cannot exit the Paris Agreement prior to November 2020
and continues to participate.

2018 IPCC report reiterated necessity for control of non-CO,
emissions to meet goals

2018 Katowice (COP24) signatories, including the U.S. and
China, agreed to methods for measuring an reporting
emissions.

Strong need exists for verifying emissions.

Uncertainty in emissions is lowest at national scale, highest at
the regional scale where corrective actions are administered.

We demonstrate improved methodology for verifying
inventories, potentially improving municipal-scale estimates.

Measurements

e Location: Livermore, CA, ~150 m above sea level,
south-east of San Francisco

64 km

Prevailing westerly winds provide frequent Pacific Ocean
oackground

nlet height: 27 m above ground level
Calibrated hourly measurements of CH4, CO2, H20

Example time series in Livermore
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Transport Modeling |

Forward transport model (WRF)

* WRFv3.9 with 36, 12, 4, 1.3km domains, 50 vertical layers.
* NCEP NARR BC/IC, outer domain nudging

Inverse Lagrangian model (STILT)

 Release point: Livermore (-121.71°, 37.67° )

Reconciling Emissions Estimates
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Simulated Background Footprint Multiplicative
measurement Bias

* Compare modeled concentrations to measurements
e Used Bayes formula to generate probability densities of
parameters given the measurements
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 Multiplicative bias and additive discrepancy have previously
been treated as time invariant to simplify analysis and exhibit
large variance and often poor fit to measurements

Modeling Innovations

 Consider the factor A to be a function of time
 Represent A(t) as a Karhunen-Loeve expansion

X =bt)+ Y AO+ch%/i VB 07 | 3 Foalg) B(ag)
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where (5. and gk (t) are the Karhunen-Loeve Expansion eigenvalues and
eigenfunctions of the covariance matrix for A,
respectively , and ¢, are the coefficients to be inferred

Example KLE basis sets for A, assuming square-exponential correlation function :

correlation length = 12 hrs correlation length = 24 hrs
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e Compare model evidence (probability of data given the model)
to determine the “optimal” model

Model Evidence

Model bias, 4
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500 particles, hourly UTC 1900 - 0300 hrs

Constant bias

Time varying bias: 48 KLE modes
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5-95% quantile range

May

Simulation period 7 days backward in time

Trace emissions for 7 days
prior using Lagrangian model

Regions of influence (ROI) given a threshold for (Footprint) X (Emissions Inventory) > 0.1% of peak

Apr Mar May

*Red indicate land influence > threshold

*Regional air district border shown
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eInfer fluxes for single influence region

 Generate model of concentrations at the receptor site

Uncalibrated Model

Prior Model for observations:

Xenalt)

Predicted mixing ratio at our
measurement location
(before bias correction)

Integrated 7 day influence
(for a single measurement hour)
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EDGAR v4.3.2, (0.1°x 0.1°)

2012 anthropogenic methane

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary
of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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Conclusion and Outlook

* Employing a temporally varying bias improves representation of
the posterior predictive model, according to model evidence

Variability between months requires further investigation
Temporal and spatial structure will be further analyzed
Potential to reveal deficiencies in emissions inventory
Alternative emissions inventories to EDGAR will be analyzed
Additional tracers will be included
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