
Methane

Source:

IPCC, 2013
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Methane is a potent GHG
Anthropogenic sources are '`'70% of current total

Wetlands account for '"25% of total emissions

Coal/Oil/Natural gas are -'30% of Anthropogenic

Short atmospheric lifetime: '`'12 yrs (>1000 years

for CO2)

Mauna Loa, Hawaii, United States (WO)
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Methane continues to follow historical growth trend

Causes of 2000-2008 pause are under debate

Attribution of Methane Emissions

in the Arctic and Continental US
PI: Ray Bambha, PM: Lori Parrott

Co-l: Cosmin Safta, Hope Micheisen

• 2015 Paris Climate Change Conference (COP21) signatories
set goals: keep global temperature increase well below 2 °C
above pre-industrial levels.

• U.S. cannot exit the Paris Agreement prior to November 2020
and continues to participate.

• 2018 IPCC report reiterated necessity for control of non-0O2
emissions to meet goals

• 2018 Katowice (COP24) signatories, including the U.S. and
China, agreed to methods for measuring an reporting
emissions.

• Strong need exists for verifying emissions.

• Uncertainty in emissions is lowest at national scale, highest at
the regional scale where corrective actions are administered.

• We demonstrate improved methodology for verifying
inventories, potentially improving municipal-scale estimates.

• Location: Livermore, CA, r%) 150 m above sea level, 64 km
south-east of San Francisco

• Prevailing westerly winds provide frequent Pacific Ocean
background

• Inlet height: 27 m above ground level

• Calibrated hourly measurements of CH4, CO2, H20

Example time series in Livermore
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Forward transport model (WRF)

• WRF v3.9 with 36, 12, 4, 1.3km domains, 50 vertical layers.

• NCEP NARR BC/IC, outer domain nudging

Inverse Lagrangian model (STILT)

• Release point: Livermore (-121.71°, 37.67° )

• 500 particles, hourly UTC 1900 - 0300 hrs

• Simulation period 7 days backward in time
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Trace emissions for 7 days

prior using Lagrangian model
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Regions of influence (ROI) given a threshold for (Footprint) x (Emissions Inventory) > 0.1% of peak

•Red indicate land influence > threshold

•Regional air district border shown

*Infer fluxes for single influence region
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Generate model of concentrations at the receptor site
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(for a single measurement hour)
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Uncalibrated Model

EDGAR v4.3.2, (0.1° x 0.1°)

2012 anthropogenic methane

Prior Model for observations:

XCH4(t)

Predicted mixing ratio at our
measurement location
(before bias correction)

lon

Reconciling Emissions Estimates

x(t) — b (t) F (t) • (À   + Vo) + Ed

Simulated

measurement

Background Footprint Multiplicative Emissions Emissions

Bias inside ROI outside ROI

Additive
discrepancy

• Compare modeled concentrations to measurements
• Used Bayes formula to generate probability densities of

parameters given the measurements

P(A, T 61.0,74) P(Y1A, 61), (T711,TC)P(AIPIA, A)13(1-14(6A)P(TC)P(aM)P(6b)

• Multiplicative bias and additive discrepancy have previously
been treated as time invariant to simplify analysis and exhibit
large variance and often poor fit to measurements

Modeling Innovations

• Consider the factor X to be a function of time
• Represent X(t) as a Karhunen-Loève expansion

o

x(t) — b(t) (Ao  Ck
1 t,

✓i3k9k(t)ch-)

3

Ft,i(x 3)  tqx

where j3k and g k (t) are the Karhunen-Loève Expansion eigenvalues and
eigenfunctions of the covariance matrix for X,
respectively , and ck are the coefficients to be inferred

Example KLE basis sets for X, assuming square-exponential correlation function :

correlation length = 12 hrs
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• Compare model evidence (probability of data given the model)

to determine the "optimal" model
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• Employing a temporally varying bias improves representation of
the posterior predictive model, according to model evidence

• Variability between months requires further investigation

• Temporal and spatial structure will be further analyzed

• Potential to reveal deficiencies in emissions inventory

• Alternative emissions inventories to EDGAR will be analyzed

• Additional tracers will be included

UQToolkit: http://www.sandia.gov/UQToolkit/

NOAA flask measurements: https://www.esrl.noaa.gov/gmd/dv/data/

EDGAR priors: http://edgar.jrc.ec.europa.eu/overview.php?v=42FT2010
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