

Model Uncertainty in Grid Connected Battery Energy Storage Systems

David Rosewater (SNL), Ross Baldick (UT Austin), and Surya Santoso (UT Austin)

Problem Statement

Consider a hypothetical commercial electrical customer billed for power under both time-of-use (TOU) and a \$50/kW demand charge.

Electric Bill without BESS

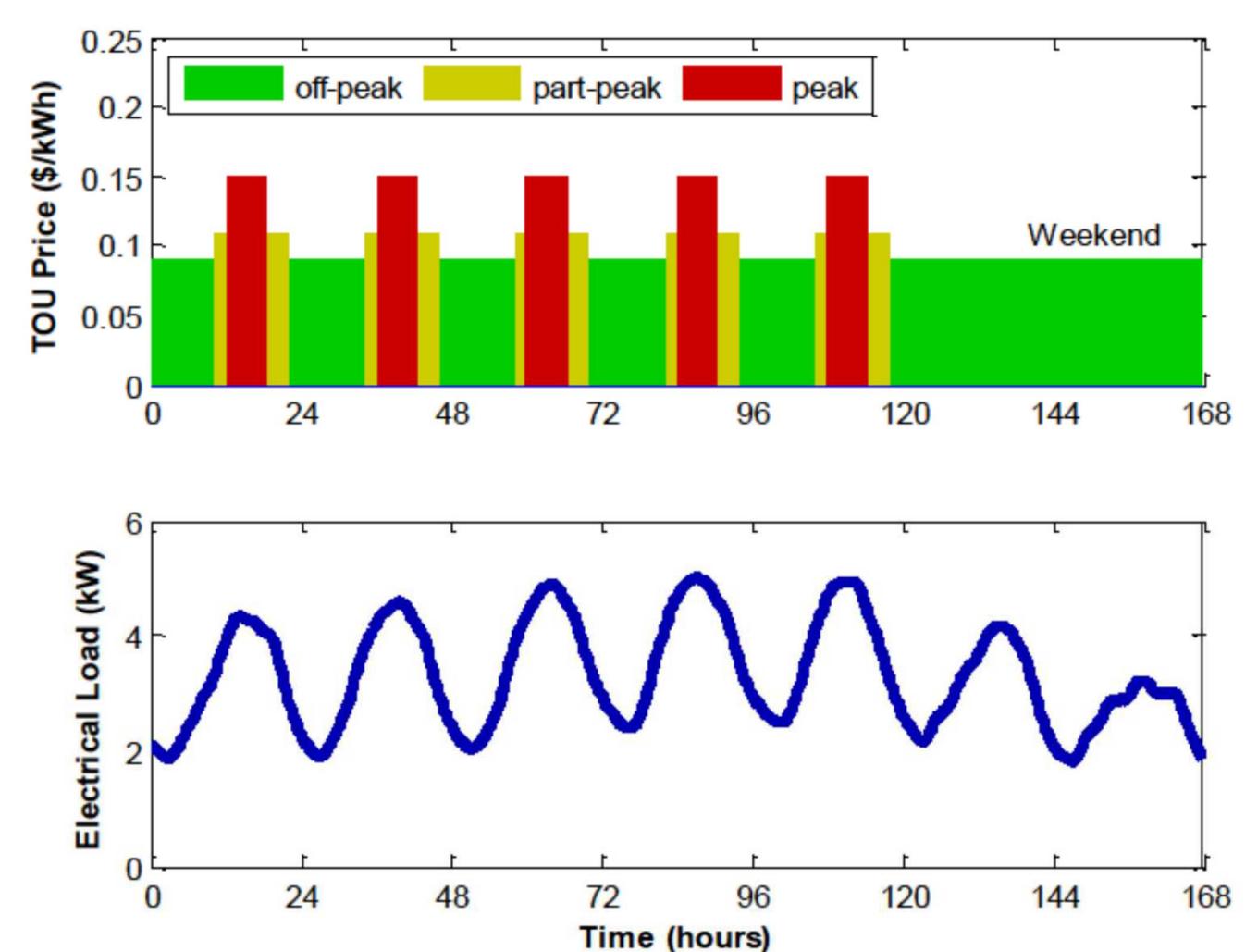
$$c^\dagger l + \$50 \max(l)$$

Electric Bill with BESS

$$c^\dagger(l + p_e) + \$50 \max(l + p_e)$$

where p_e is the battery system power that element wise subtracts from l when the battery system is discharging.

Design a control algorithm to optimally calculate a vector of battery system power that minimizes the customer's cost without exceeding the battery's limits.

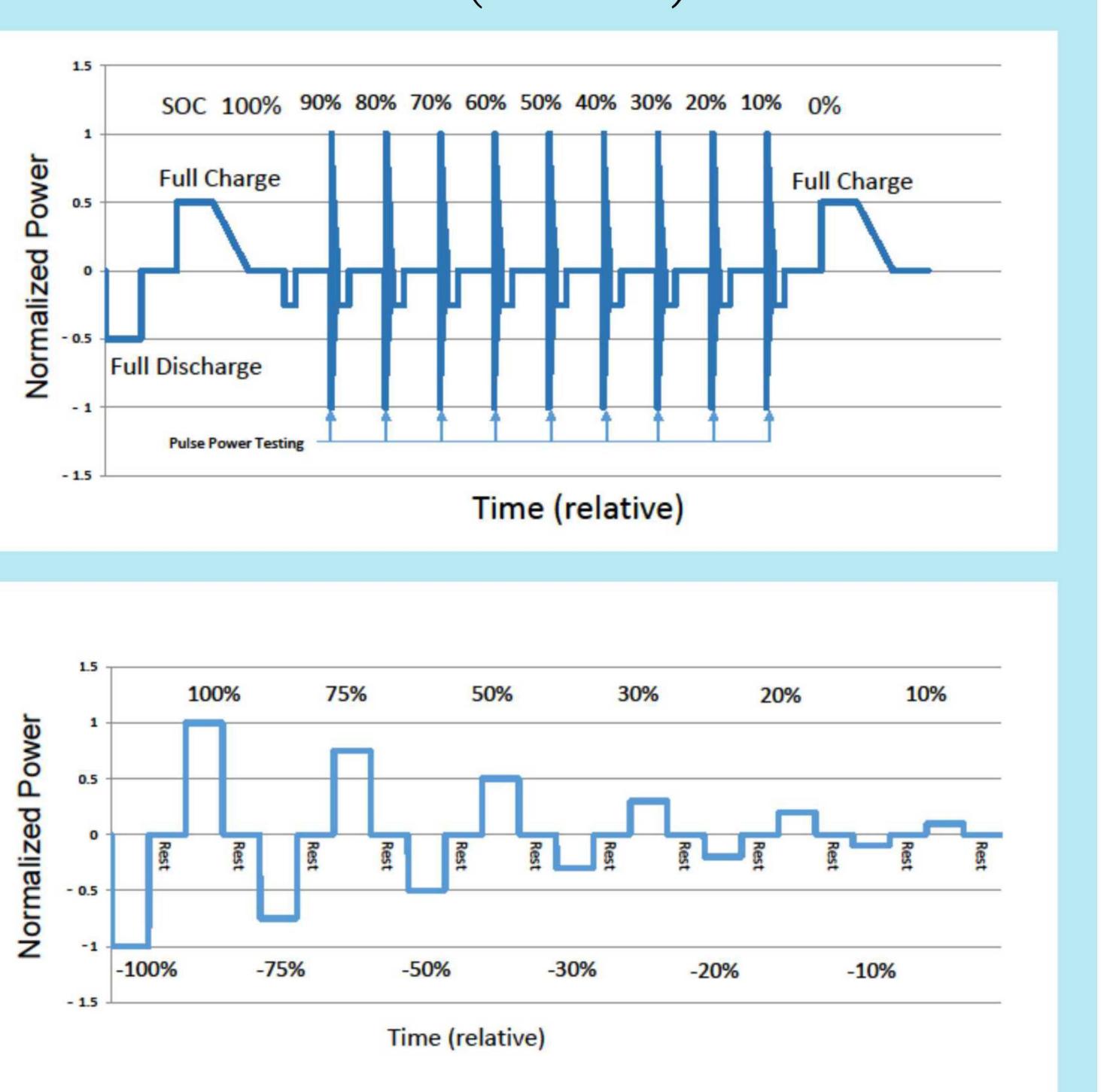


Reducing Model Uncertainty Through Testing

Energy Storage Pulsed Power Characterization (ESPPC) Test

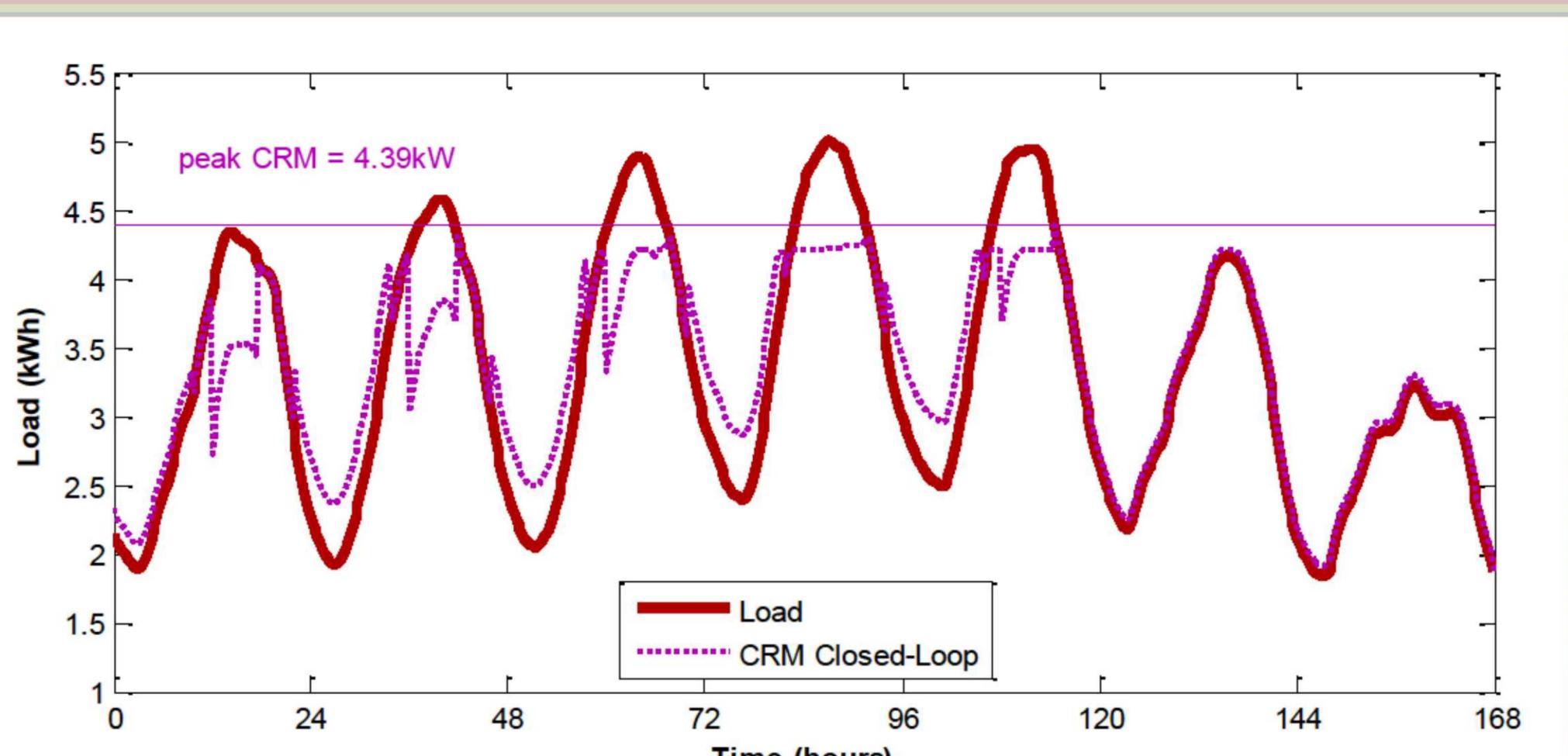
Experimental procedure takes the BESS through a wide operational range to calculate accurate model parameters.

1. Discharge the system at p_{nom} until ς_{min} has been reached
2. Float at $p_e \approx 0$ for 1 hour
3. Charge the system at p_{nom} until ς_{max} has been reached
4. Float at $p_e \approx 0$ for 1 hour
5. Discharge the system at p_{nom} until 10% of the usable charge ($\varsigma_{max} - \varsigma_{min}$) has been removed from the battery
6. Float at $p_e \approx 0$ for 1 hour
7. Perform pulse power testing
 - i. Discharge at p_{nom} for 1 minute
 - ii. Float at $p_e \approx 0$ for 1 minute
 - iii. Charge at p_{nom} for 1 minute
 - iv. Float at $p_e \approx 0$ for 1 minute
 - v. Repeat i through iv using 75%, 50%, 30%, 20%, and 10% of p_{nom} and p_{min}
8. Repeat steps 5 through 7 until ς_{min} has been reached (collecting impedance and conversion efficiency curves at nine total states of charge)
9. Charge the system at p_{nom} until ς_{max} has been reached

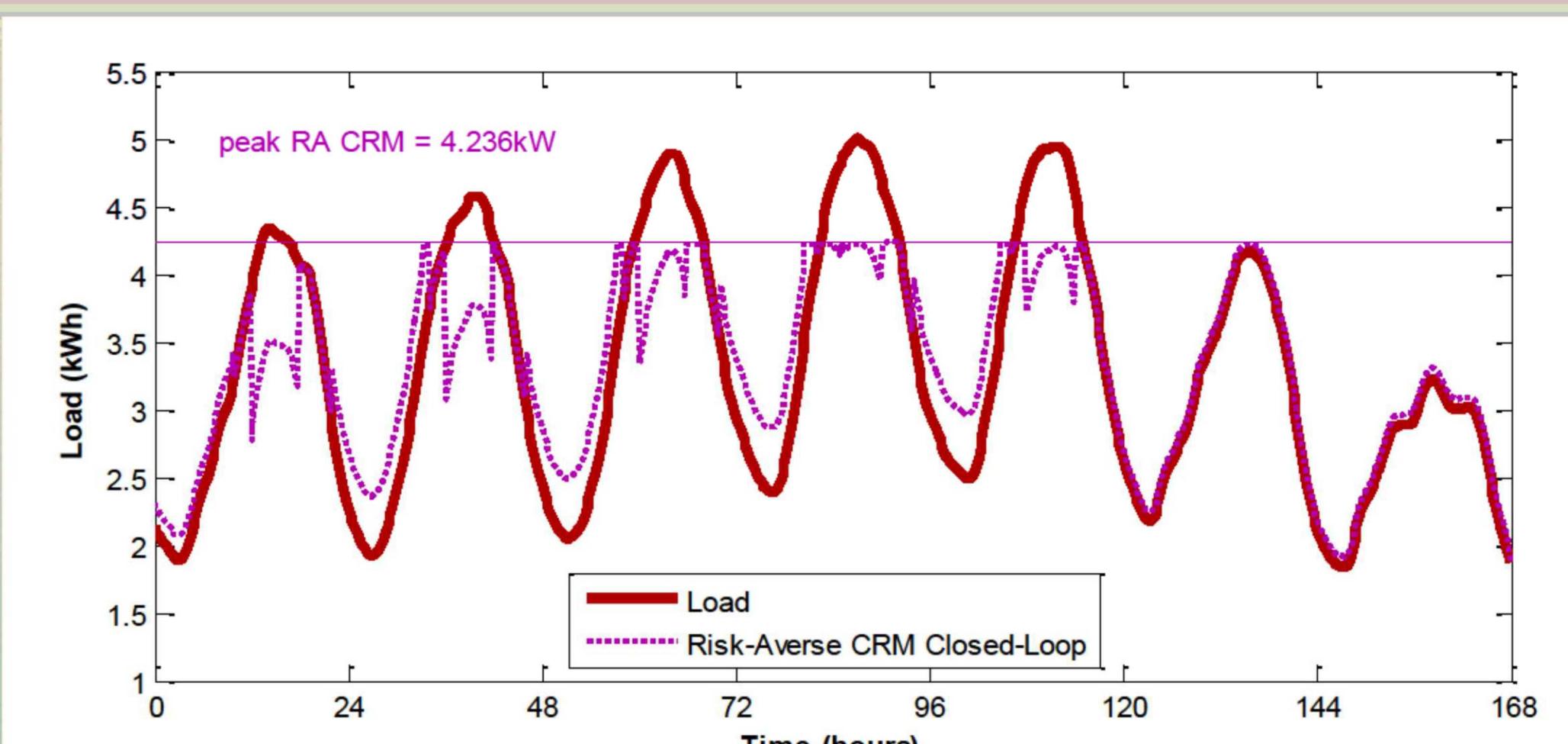


Shaping Model Uncertainty to Improve Controller Robustness

To explore the effects of model uncertainty we adjust the parameters of the Extended CRM to create an intentional parameter mismatch between the controller model and the controlled system. This demonstrates that the CRM is vulnerable to model uncertainty, yielding a \$9.63 optimistic short-fall.



Controller Scenario	Sim-Model*	Total Bill	% Savings	Optimistic Short-fall**
Baseline	—	\$311.01	—	—
ERM OL Cal	—	\$274.42	11.7%	—
ERM OL Ach	mean	\$274.42	11.7%	\$0.00
ERM CL Ach	mean	\$273.67	12.0%	-\$0.75
ERM CL Ach	extreme	\$273.81	12.0%	-\$0.61
CRM OL Cal	—	\$269.67	13.2%	—
CRM OL Ach	mean	\$275.10	11.6%	\$5.43
CRM CL Ach	mean	\$269.94	13.2%	\$0.27
CRM CL Ach	extreme	\$279.30	10.3%	\$9.63
RA CRM OL Cal	—	\$271.33	12.8%	—
RA CRM OL Ach	mean	\$271.33	12.8%	\$0.00
RA CRM CL Ach	mean	\$271.19	12.8%	-\$0.14
RA CRM CL Ach	extreme	\$271.44	12.7%	\$0.11



By choosing parameters to consistently underestimate available energy (overestimating SoC) we shape the CRM's uncertainty profile to make the controller more robust to variations in battery performance.