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4 Motivation

Residual stresses should be considered when designing composite parts

■Computational simulation of process-induced stress state is an alternative to experimental
measurements

■ Experimental approaches become impractical with increasing part complexity

■Sandia's simplified residual stress modeling approach has been validated
■ CTE mismatch and polymer shrinkage

■ Experimentally measured stress-free temperature

■ Requires the definition of 20+ material parameters

■Experimental characterization of many material properties not feasible
■ Sensitivity analysis methods can be employed to determine parameters critical to a simulated response

■ Critical parameters should be rigorously characterized, non-critical parameters can be approximated

■Many sensitivity analysis methods exist in the literature offering trade-offs between complexity and
cost

■ Sampling methods are simple to implement, but computationally expensive

■ Surrogate methods are complex, but usually require fewer samples

■



5 Objectives

i Develop a residual stress case study that will be:
• Low-cost to model Sensitivity studies will require thousands of simulations

• Reasonable to physically implement nominal model validation is important

°Complete a survey of common sensitivity analysis methods
• Determine the ideal approach during the simulation of a composite's
manufacturing process
• Metric for comparison will be computational cost

• Demonstrate how simulations can assist with allocating sparse experimental
resources

• Determine the material parameters most critical to predictions of a composite's
process-induced stress state





7 Test Description

•Bi-material, CFRP/aluminum strip

• Visually obvious post-fabrication residual stresses

• Efficient and low-cost to model

•Dimensions:

• In plane dimensions: 25.4 mm x 304.8 mm

• Thickness: 1.6 mm (0.8 mm aluminum, 0.8 mm CFRP)

°Materials:

• 8-harness satin weave, CFRP prepreg, [01

• Aluminum 6063-T6

• Composite co-bonded to aluminum during an autoclave
cure

°Process-induced stresses manifest as out-of-plane
warpage/curling along the strip's length
• CFRP and aluminum dissimilar CTE's

• Irreversible strain due to polymer shrinkage

°Measurement procedure:
• Granite table, guarantees flatness

• Digital height gage, ±0.01 mm

•One strip was manufactured and measured: 15.4 mm
• Limited experimental rigor expended, sensitivity study

survey not a validation exercise
• Qualitative nature of the experiment indicates if the model captures the

correct physical trends





9 Analysis Software and Element Formulation

■Analysis Software:
■ All simulations were processed with Sandia's SIERRA SolidMechanics/Implicit (Adagio")

■ Lagrangian, three dimensional code for FEA of solid structures

■ Suitable for implicit, quasi-static analyses

■ DAKOTA used to facilitate sensitivity study survey
■ Interface between SIERRA/SolidMechanics and iterative analysis methods

■ Available algorithms for sensitivity analysis, uncertainty quantification, and gradient and non-gradient based
optimization

°Element Formulation:
■ 8-noded hexahedral elements were used for all modeled components

■ Adagio's default element formulation was used for simplicity and to reduce cost
■ Single point Gaussian quadrature

■ Hourglass modes are controlled through the definition of an hourglass stiffness



lo Material Models and Nominal Property Values

°Aluminum 6063-T6

• Linear-elastic model (no yielding or failure expected)

• Requires: density, Young's modulus, and Poisson's ratio

• Isotropic CTE

• Material properties taken from literature

°Uncured CFRP

• Same linear-elastic model as aluminum

• Same Isotropic CTE as aluminum

• Material properties define a compliant and incompressible ,
isotropic-elastic solid

• E = 0.1 GPa, v = 0.499

°Cured CFRP

• Linear-elastic orthotropic model

• Requires: density, nine regular elastic constants, and material
orientation

• Orthotropic CTE's

• Material properties taken from a combination of testing,
rnicromechanical modeling, and literature

Nominal Aluminum Properties

-..rYoung's Modulus, E (GPa)

Poisson's Ratio, v

Coefficient of Thermal Expansion,

(1/°C)

Uncured Composite Properties

11rDensity, e (kg/m
oung's Modulus, E (GPa)

Poisson's Ratio, v

Coefficient of Thermal Expansion

(1/°C)

Nominal Cured Com osite Pro erties

r Density, rkg/m3 1,600

Elastic Moduli, En, E22, E33 (GPajj E1P- 63.86, 62.74, 8.59

Poisson's Ratios, v12, v13, v23 4mimm 0.0480, 0.4075, 0.0548

Shear Moduli, G12, G13, G23 (GPa) 1.11. 3.44, 3.27, 3.25

Glass Transition Temperature, Tg (°C) -IM. 125.1

Stress-Free Temperaure, Ts f (°C) Ell 143.3

Ell Glassy Region Rubbery Region

Coefficient of Thermal Expansion, CTEn (1/°C)1 3.40e-06 1.13e-06

Coefficient of Thermal Expansion, CTE22 (1/°C)1111w- 3.36e-06 1.13e-06

Coefficient of Thermal Expansion, CTE33 (1/OC)mr 7.20e-05 2.83e-04



11 Model Geometry and Boundary Conditions

Aluminum/CFRP modeled as separate, homogenized material layers

mCFRP layer merged to aluminum layer
Merging approximates perfect bonding, delamination is not modeled

°Boundary conditions:
• Quarter model symmetry conditions assumed for computational efficiency

• Two isothermal temperature cycles approximate the CFRP's curing:

• Ambient (20°C) to stress-free temperature (143.3°C)

• Stress-free temperature to ambient

• CFRP's curing/stiffness change approximated with element activation

Yellow Layer = Carboil Compo5itt
Greet'. Layer = Alausinauu

•

2 I

Symmetry
Planes

•



12 Element Activation

ECFRP's stiffness change due to the matrix material's polymerization reaction is approximated with
Adagio's element activation
• The stress/strain/deformation output of one simulation sets the initial stress/strain/deformation state of a

subsequent simulation

• An uncured composite material is simulated as compliant in one simulation and stiff in a subsequent simulation

0-Bi--material strip processing modeled as two subsequent simulations:
• Simulation #1:

• Aluminum modeled as stiff, CFRP modeled as compliant with uncured material properties

• Model is isothermally heated to stress-free temperature

• Stress/strain/displacement data written to an output file

• Simulation #2:

• Input geometry, stress/strain/displacement states from output of simulation #1

• CFRP assigned actual material properties

• Model is isothermally cooled to room temperature, residual stresses form due to CTE mismatch

Simulation

1

Components Modeled with
Actual Material Pro erties

Components Modeled with
Com sliant Material Pro erties

Applied Temperature

Bounda Conditions

Aluminum Layer Composite Layer
Heating from 20°C to

143.3'C

2
Aluminum Layer,
Composite Layer

None
Cooling from 143.3°C to

20°C



1 3 Solution Verification, Mesh Optimization, Nominal Model Validation

°Mesh study considered hex element size and aspect
ratio
• What is the largest element providing confident predictions?

N3 element lengths and 3 aspect ratios
• 9 models processed according to described FE methods

- 3 separate mesh studies based on the 3 aspect ratios

°Richardson's extrapolation estimated "exact" out-of-
plane displacement
• Approximates a higher order estimate of a continuum value

given discrete solutions discretization errors

°Summary of results:
• Extrapolated exact solutions do not differ significantly
• 1:4:4 can be used with a reasonable expectation of model accuracy

• Medium, 1:2:2 mesh size offers best combination of
computational efficiency and model accuracy
• Lowest discretization error with fewer than 36 solution cores

• Exact solution and shape of deformation agree well enough with
experiment to satisfy physics

3 Element Aspect Ratios and 3 Levels of Refinement
Aspect Ratio = 1:1:1 Aspect Ratio = 1:2:2 Aspect Ratio = 1:4:4

Coarse Medium Fine

Aspect
Ratio

Mesh

Refinement
Run Time (min)
/Solution Cores

Predicted

Deflection
Error
CYO

Exact

Solution

Coarse 01:14.3/1 14.02 20.2

1:1:1 Medium 04:51.7/4 12.16 4.3 11.666
Fine 24:32.7/36 11.77 0.9
Coalse 00:33.7/1 12.75 9.4

1:2:2 Medium 01:04.4/4 11.90 2.2 11.652

Fine 03:24.3/36 11.71 0.5

Coasse 00:25.2/1 9.33 20.3
1:4:4 Medium 00:40.1/4 10.94 6.5 11.702

Fine 00:59.7/36 11.46 2.1

Out-of-Rana Displacerner4 (rnr.)
0.04400 2 4 6 8 10 126.01



Sensitivity Analysis Methods



1 5 Survey Overview

•Sandia's residual stress modeling method requires the characterization
of at least 20 parameters
• Sparse experimental resources Rigorous characterization not possible

• Sensitivity analyses can assist in prioritizing/allocating experimental
resources
• Different methods offer trade-offs between complexity and efficiency

°Survey of DAKOTA's sensitivity analysis methods was completed with
the verified bi-material strip model
• What model parameters affect the residual stress predictions?
• Which method is best for process modeling of composites?

°Six methods were examined:
• Parameter study (centered parameter study)

• Design of Experiments (Box-Behnken Design)

• Sampling Methods (Monte Carlo, Latin HyperCube)

• Surrogate Methods (Gaussian process, Polynomial Chaos Expansion)

°Approach to completing the survey:
• Step 1: Define parameter space
• Nominal values ± 3 standard deviations or ± percentage of the nominal

Step 2: Complete sensitivity studies with the six methods

Step 3: Complete N-way ANOVA to find critical parameter list

Sensitivitv Studv Parameter S ace

Composite

Properties

Aluminum

Properties

Parameter

E11 (GPa)

E22 (GPa)

E33 (GPa)

V12

v13

V23

G12 (GPa)

G13 (GPa)

G23 (GPa)

Tg CC)

TSf CC)

CTE1 1 (1/°C, rubbery)

CTE22 (1/°C, rubbery)

CTE33 (1/°C, rubbery)

CTE11 (1/°C, glassy)

CTE22 (1/°C, glassy)

CTE33 (1/°C, glassy)

E (GPa)

v

CTE (1/°C)

Maximum

Value

57.5 70.2

56.5 69.0

7.7 9.4

0.043

0.367

0.367

0.053

0.449

0.448

3.1

2.9

2.9

110.9

140.6

3.8

3.6

3.6

141.8
146.1

0.294e-6 1.913e-6

0.357e-6 2.794e-6

268.1e-6 290.9e-6

3.060e-6 3.708e-6

2.585e-6 4.165e-6

67.8e-6 76.5e-6

57.0 85.6

0.264 0.396

18.7e-6 28.1e-6



16
Parameter Study Method: Centered Parameter Study (CPS)

•One parameter study method was selected for consideration CPS

• DAKOTA also has multi-dimensional and vector parameter studies

• CPS is cheapest, quantifies relationships between multiple model inputs
and the simulated response

• General CPS approach: "One-at-a-Time"
• Step 1: Define the parameter space and an initial value set

• Step 2: Process a simulation with the initial value set

• Step 3: For each parameter, process simulations at s steps ± the initial value. Values for all
other model parameters held constant.

• Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical
parameter list

Bi-material strip CPS process:
• Step 1: 20-dimensional parameter space, initial values defined by nominal properties

• Step 2: Simulation processed with nominal material properties

• Step 3: Starting with s=1 and step size= (max value — nominal value)/s, independently
process simulations along each dimension.

• Step 4: ANOVA applied to resulting 41 predictions to generate critical parameter list

• Step 5: Repeat steps 3-4 with incrementally increasing s until critical parameter list is
converged

Samples Required for CPS: 
(n=dimensions, s=steps) s

Samplescps = 1 + 21ns

i=1

Sample 2-Dimensional CPS
Parameter Space 

Parameter 1

•

•

• • •

•

•

• Indicates a sample

 ► Parameter 2



17 Design of Experiments: Box-Behnken Design (BBD)

One DOE method was selected for consideration BBD

• BBD does not sample outside of parameter space, requires
fewer samples than other DOE methods

°General BBD approach:
• Step 1: Define the parameter space with minimum, maximum, mean values
• Step 2: Parameter combinations are created at the center and midpoints of the

process space edges.

• Step 3: A simulation is processed at each parameter combination

• Step 4: Apply the ANOVA to the ensemble of predictions to determine the
critical parameter list

°Bi-material strip BBD process:
• Step 1: 20-dimensional parameter space

• Step 2: BBD specified 761 parameter combinations

• Step 3: 761 simulations were processed

• Step 4: ANOVA applied to resulting 761 predictions to generate critical
parameter list

Samples Required for BBD: 
(k=number of parameters)

SamplesBBD = 1+ 2k(k — 1)

Sample 3-Dimensional BBD

Parameter Space 

Parameki 1

Paratneter 3

• Indicates a sample



18 Sampling Methods: Monte Carlo (MC)

°Two sampling methods were considered MC and LHS
• MC is simple and easy to implement with any deterministic FE code

• LHS is more complex, but provides better parameter space coverage with fewer samples

°Monte Carlo (MC)
• Completely random sampling
• No guarantee that any number of samples will cover parameter space

• Convergence is assured, but a prohibitive number of samples may be required

• General approach:
• Step 1: Define the parameter space with minimum, maximum values

• Step 2: Define the desired number of samples, N

• Step 3: Process N simulations

• Step 4: Apply the ANOVA to the N predictions to determine the critical parameter list

• Bi-material strip MC process:
• Step 1: 20-dimensional parameter space

• Step 2: Initial samples size = 22, or n+2

• Step 3: Process 22 simulations

• Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

• Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged

•



19 Sampling Methods: Latin HyperCube Sampling (LHS)

°Latin HyperCube Sampling (LHS)
• Stratified sampling technique
• If N samples are desired, each parameter space dimension is divided into N

segments of equal probability

• Relative length of segments governed by probability distributions

• N samples placed throughout parameter space grid —> One, and only one, sample can be
placed in each bin

• Better coverage of parameter space!

• General approach:
• Step 1: Define the parameter space and probability distributions for each parameter

• Step 2: Define the desired number of samples, N —> Stratify parameter space

• Step 3: Process N stratified simulations

• Step 4: Apply the ANOVA to determine the critical parameter list

• Bi-material strip LHS process:
• Step 1: 20-dimensional parameter space, uniform distributions for all parameters

• Step 2: Initial samples size = 22, or n+2

• Step 3: Process 22 simulations

• Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

• Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list
is converged

Sample 2-Dimensional LHS

Parameter S ace
(2 parameters and 4 samples)

Parmileter 1
A

•

•
Parameter 2

• Indicates a sample



20 
Surrogate Methods: Polynomial Chaos Expansion (PCE)

°Two surrogate methods were considered —> PCE and GP

°General surrogate model approach:

• Minimally sample the parameter space to find a numerical function defining the relationship between the desired model output and the
design variables

• Sample the surrogate model 1000's of time at negligible cost

°Polynomial Chaos Expansion (PCE) —> Stochastic expansion method

• Multivariate orthogonal polynomials build the functional relationship between a response function and its random inputs

• Polynomials are tailored to the specific input parameter distribution types —> Legendre polynomial represent uniform distributions

• Polynomial coefficients found through regression

• LHS samples of the parameter space build a response function set that is fit with polynomials of varying order —> Cross-validation determines best
polynomial order

• General Approach:

• Step 1: Define the parameter space and probability distributions for each
parameter

• Step 2: Define the desired number of LHS samples (N), stratify parameter
space, process N stratified simulations

• Step 4: Build the PCE surrogate using cross-validation to determine the best
polynomial order

• Step 5: Sample the surrogate model 1000's of times

• Step 6: Apply the ANOVA to the surrogate samples to determine the critical
parameter list

• Bi-Material Strip PCE process:

• Step 1: 20-dimensional parameter space, uniform distributions for all
parameters

• Step 2: Initial samples size = 21, or n+1 —> response function set size = 21

• Step 4: PCE surrogate built considering polynomial orders 1-5

• Step 5: 10000 samples were taken of the PCE surrogate

• Step 6: ANOVA applied to resulting 10000 predictions to generate critical
parameter list

• Step 7: Repeat steps 2-6 with incrementally increasing N until critical
parameter list is converged



21
Surrogate Methods: Gaussian Process (GP)

•Gaussian Process (GP)
• All finite dimensional distributions must have a multivariate normal, or Gaussian, distribution
• Example: Given a stochastic process, X, that is a function of the variables within a set T, for any choice of distinct values of T,

the corresponding vector Xmust have a multivariate normal distribution

• Normal distribution can be described by the finite dimensional distribution's mean and covariance functions the Gaussian
distribution is defined

• General Approach:
• Step 1: Define the parameter space and probability distributions for each parameter

• Step 2: Define the desired number of LHS samples (N), stratify parameter space, process N stratified simulations

• Step 4: Assume response function set adheres to a Gaussian distribution and build the GP surrogate

• Step 5: Sample the surrogate model 1000's of times

• Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list

•Bi-Material Strip GP process:
• Step 1: 20-dimensional parameter space, uniform distributions for all parameters

• Step 2: Initial samples size = 21, or n+1 —> initial response function set size = 21

• Step 4: GP surrogate was built

• Step 5: 10000 samples were taken of the GP surrogate

• Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list

• Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list is converged



Results and Conclusions



23 Comparison of Sensitivity Analysis Methods

°Surrogate methods require the fewest samples for a converged
list of critical parameters
• GP may be preferred, slightly easier to implement

Sampling methods are the least efficient approaches 4-8x
more expensive than surrogate methods

111 MC/LHS are simple to implement with any deterministic FE code

• Merit consideration when lacking access to iterative analysis tools

EBBD is more efficient than the sampling methods, but twice as
expensive as the surrogate methods
• DOE methods are less complex than surrogates, can be
implemented with any deterministic FE code

• Should be considered as preferred alternative to sampling methods
when lacking access to iterative analysis tools

°CPS provides a reasonable critical parameters list at a low
number of samples, but seems to omit some of the less
influential critical parameters
• Should be considered when a measure of sensitivity is required, but

only a handful of samples are computationally affordable

Summar of Sensitivit Stud Surve
Model Parameters

Method Sample #

CPS

41

E22 E33 v12 1/13 1223 G22 G13 G23 a11,6 a11,6033,6 1 aii,61 a22,R

81

121

MC

22

44

88

176

352

704

1408

2816

P.
5632

LHS

BBD

PCE

GP

22

44

88

176

352

704

1408

2816

761

21

42

84

168

336

672

21

42 

84 

168

336

a33,R Tg 
IMM11

E1 v- a-1

672

Td



24 Material Parameter Criticality

°Summary of critical parameters:
• All methods selected as critical: E11, E22, °CMG, C(11,R, Tg, Tsf, EA1, aAl
• In-plane mechanical/thermal properties of CFRP and aluminum properties should be

• Residual stress development governed by in-plane CFRP/A1 contraction mismatch

• Tg and Ts f should be critical

• Ts f indicates when residual stresses begin to develop

• Tg governs rate of stress development

• All methods, except CPS, selected as critical: v12 , OC22,G
• All methods, except CPS and BBD, selected as critical: via

• On/y surrogate methods selected: CX22,R

• v12 , C(22,G3 vA13 7•22,R may be less influential

critical

°PCE surrogate can determine Sobol indices
• Sensitivity indices —> rank critical parameters by relative influence

• Parameters selected by some, but not all, methods as critical of the lowest indices

• The most significant indices govern the development of thermal strains

• aid is most significant by a large margin

• In-plane CTE of CFRP « CTE of aluminum —> aluminum thermal contractions drive residual stress
development

PCE Sobol Indices

Parameter  Sobol Index I

T.

111 R

E11

VAl

V13

E33

133 R

623

V23

Gi3

MR=

98.003763%

L091548%

0.363556%

0.354474%

0-059520%

0.056149°A

0.027971%

omin 954%
0.000305%

0.000301%

0-000295%

0.000018%

0.000000%

0.000000%

0.000000%

0.000000%

0.000000DA

0.000000%

0.000000%

0.000000%



25 Final Summary and Conclusions

Residual stresses should be considered when designing composite parts
• Finite element simulation of residual stresses may be preferred to experimental measurement

°Sandia's process modeling approach requires 20+ material parameters
• Sparse experimental resources can make rigorous characterization impractical

• Sensitivity surveys can be used to allocate experimental resources

°A survey of DAKOTA's sensitivity survey capabilities was completed with a process model
of a mesh-optimized, bi-material CFRP/Aluminum strip
• What is the ideal sensitivity study approach?

• GP/ PCE surrogates demonstrated the best computational efficiency

• BBD approach should be used if there is no access to an iterative analysis toolkit

• CPS should be used if parameter sensitivity is desired for an expensive model

• Suggested methodology can be applied generally, not just to process modeling of composites

• Which model parameters are most critical to a composite's residual stress predictions?

• In-plane mechanical and thermal properties in-plane contractions govern residual stress development at the bi-material interface

• Stress-free and glass transition temperatures Tg and Ts f govern when and with what rates residual stresses develop




