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Introduction




Motivation H I

Residual stresses should be considered when designing composite parts

Computational simulation of process-induced stress state 1s an alternative to experimental
measurements L

Experimental approaches become impractical with increasing part complexity

Sandia’s simplified residual stress modeling approach has been validated
CTE mismatch and polymer shrinkage

Experimentally measured stress-free temperature

Requires the definition of 20+ material parameters

Experimental characterization of many material properties not feasible
Sensitivity analysis methods can be employed to determine parameters critical to a simulated response

Critical parameters should be rigorously characterized, non-critical parameters can be approximated I

Many sensitivity analysis methods exist in the literature offering trade-offs between complexity and
cost

Sampling methods are simple to implement, but computationally expensive

Surrogate methods are complex, but usually require fewer samples
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Objectives

Develop a residual stress case study that will be:
Low-cost to model — Sensitivity studies will require thousands of simulations

Reasonable to physically implement — nominal model validation is important

Complete a survey of common sensitivity analysis methods
Determine the ideal approach during the simulation of a composite’s
manufacturing process

Metric for comparison will be computational cost

Demonstrate how simulations can assist with aﬂocating sparse experimental
resources

Determine the material parameters most critical to predictions of a composite’s
process-induced stress state



Validation Experiment




7 | Test Description _ I

“Bi-material, CFRP/aluminum strip “Process-induced stresses manifest as out-of-plane

* Visually obvious post-fabrication residual stresses warpage/curling along the strip’s length
* CFRP and aluminum dissimilar CTE’s

* Irreversible strain due to polymer shrinkage

= Efficient and low-cost to model

“Dimensions:
“Measurement procedure:

* In plane dimensions: 25.4 mm x 304.8 mm = Granite table, guarantees flatness

“* Thickness: 1.6 mm (0.8 mm aluminum, 0.8 mm CEFRP)

* Digital height gage, £0.01 mm "
“Materials: “One strip was manufactured and measured: 15.4 mm
* 8-harness satin weave, CEFRP prepreg, [0,] * Limited experimental rigor expended, sensitivity study
2 Aluminum 606326 survey not a validation exercise

* Qualitative nature of the experiment indicates if the model captures the

= Composite co-bonded to aluminum during an autoclave cotrect physical frends

cure I




Finite Element Methods
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Analysis Software and Element Formulation

Analysis Software:
All simulations were processed with Sandia’s SIERRA SolidMechanics/Implicit (“Adagio”)

Lagrangian, three dimensional code for FEA of solid structures

Suitable for implicit, quasi-static analyses

DAKOTA used to facilitate sensitivity study survey
Interface between SIERRA /SolidMechanics and iterative analysis methods

Available algorithms for sensitivity analysis, uncertainty quantification, and gradient and non-gradient based
optimization

Element Formulation:
8-noded hexahedral elements were used for all modeled components

Adagio’s default element formulation was used for simplicity and to reduce cost
Single point Gaussian quadrature

Hourglass modes are controlled through the definition of an hourglass stiffness



10 | Material Models and Nominal Property Values

* Aluminum 6063-T6 Nominal Aluminum Properties

= Linear-elastic model (no yielding or failure expected)

* Requires: density, Young’s modulus, and Poisson’s ratio

= Isotropic CTE

= Material properties taken from literature

*Uncured CFRP : :
: : : Uncured Composite Properties
= Same linear-elastic model as aluminum 5

= Same Isotropic CTE as aluminum

= Material properties define a compliant and incompressible ,
isotropic-elastic solid

= E=0.1 GPa,v=0.499

“Cured CFRP Nominal Cured Composite Properties I

* Linear-clastic orthotropic model  DemsigeGe/my)  tew

 samsas
o ws

S hlatens propetties & i tom 4 combluation oLtestag, 77 GlassyRegion Rubbery Region
micromechanical modeling, and literatute  Coefficient of Thermal Expansion, CTE,, (1/°C)  340e-06  113e06

Coiten o Toamml Expunion, CTE5 (/') Tobts 2ot |

* Requires: density, nine regular elastic constants, and material
orientation



11 | Model Geometry and Boundary Conditions _ I

Aluminum/CFRP modeled as separate, homogenized material layers |

CEFRP layer merged to aluminum layer

Merging approximates perfect bonding, delamination is not modeled L

Boundary conditions:
Quarter model symmetry conditions assumed for computational efficiency

Two 1sothermal temperature cycles approximate the CFRP’s curing:
Ambient (20°C) to stress-free temperature (143.3°C)

Stress-free temperature to ambient

CFRP’s curing/stiffness change approximated with element activation

Yellow Layer = Carbon Composite . . [

Green Layer = Aluminum
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CFRP’s stiffness change due to the matrix material’s polymerization reaction 1s approximated with I
Adagio’s element activation

The stress/strain/deformation output of one simulation sets the initial stress/strain/deformation state of a
subsequent simulation

An uncured composite material is simulated as compliant in one simulation and stiff in a subsequent simulation

Bi-material strip processing modeled as two subsequent simulations:
Simulation #1:
Aluminum modeled as stiff,
Model is isothermally heated to stress-free temperature
Stress/strain/displacement data written to an output file
Simulation #2:

Input geometry, stress/strain/displacement states from output of simulation #1

Model is isothermally cooled to room temperature, residual stresses form due to CTE mismatch I

Simulation | Components Modeled with Components Modeled with Applied Temperature
Actual Material Properties | Compliant Material Properties Boundary Conditions
Heating from 20°C to
143.3°C
Cooling from 143.3°C to

1 Aluminum Layer Composite Layer

Aluminum Layer,
Composite Layer 20°C

None




13 | Solution Verification, Mesh Optimization, Nominal Model Validation

Mesh study considered hex element size and aspect
ratio

What is the largest element providing confident predictions?

Aspect Ratio = 1:1:1 Aspect Ratio = 1:2:2 Aspect Ratio = 1:4:4

3 element lengths and 3 aspect ratios
9 models processed according to described FE methods
3 separate mesh studies based on the 3 aspect ratios

Coarse Medium Fine
3 b " b 22
Richardson’s extrapolation estimated “exact’ out-of-
plane dlsplacement Mesh Predicted Exact
Aspect Refinement e Deflection et Solution
Apprommates a higher order estimate of a continuum value Ratio L™ | /Solution Cores | ¢ % @) | ol
given discrete solutions — discretization errors Coarse 01:14.3/1 14.02
211 Medium 04:51.7/4 12.16
Fine 24:32.7/36 11.77
. Coarse 00:33.7/1 1295
Summary Of results' 1212 Medium 01:04.4/4 11.90
Extrapolated exact solutions do not differ significantly Eide 0324.3/36 itn
Coarse 00:25.2/1 9.33
1:4:4 can be used with a reasonable expectation of model accuracy 4: Medium 00:40.1/4 10.94
Fine 00:59.7/36 11.46

Medium, 1:2:2 mesh size offers best combination of
computational efficiency and model accuracy

Lowest discretization error with fewer than 36 solution cores

Exact solution and shape of deformation agree well enough with
experiment to satisfy physics




Sensitivity Analysis Methods
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Survey Overview

Sandia’s residual stress modeling method requires the characterization
of at least 20 parameters

Sparse experimental resources — Rigorous characterization not possible

Sensitivity analyses can assist in prioritizing/allocating expetimental
resources

Different methods offer trade-offs between complexity and efficiency

Survey of DAKOTA’s sensitivity analysis methods was completed with
the verified bi-material strip model

What model parameters affect the residual stress predictions?
Which method is best for process modeling of composites?

Six methods were examined:
Parameter study (centered parameter study)

Design of Experiments (Box-Behnken Design)
Sampling Methods (Monte Carlo, Latin HyperCube)
Surrogate Methods (Gaussian process, Polynomial Chaos Expansion)

Approach to completing the survey:
Step 1: Define parameter space
Nominal values * 3 standard deviations or £ percentage of the nominal
Step 2: Complete sensitivity studies with the six methods
Step 3: Complete N-way ANOVA to find critical parameter list

Composite
Properties

Aluminum
Properties

Parameter

E,; (GPa)
E,, (GPa)
E;; (GPa)
V12
V13

93
Gy, (GPa)
Gy; (GPa)
Gy; (GPa)

1,0C)

T, CC)
CTE,; (1/°C, rubbety)
CTE,, (1/°C, rubbety)
CTE;; (1/°C, rubbety)
CTE; (1/°C, glassy)
CTE,, (1/°C, glassy)
CTE; (1/°C, glassy)
E (GPa)
v

CTE (1/°C)

Minimum | Maximum

Value
57.5
56.5

7.7
0.043
0.367
0.367

3.1

2.9

2.9
110.9
140.6

0.294e-6
0.357e-6
268.1e-6
3.060e-6
2.585e-6
67.8e-6
57.0
0.264
18.7e-6

Value
70.2
69.0

9.4
0.053
0.449
0.448

3.8

3.6

3.6
141.8
146.1

1.913e-6
2.794e-6
290.9e-6
3.708e-6
4.165e-6
76.5e-6
85.6
0.396
28.1e-6
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Parameter Study Method: Centered Parameter Study (CPS)

One parameter study method was selected for consideration — CPS
DAKOTA also has multi-dimensional and vector parameter studies

CPS 1s cheapest, quantifies relationships between multiple model inputs
and the simulated response

General CPS approach: “One-at-a-Time”
Step 1: Define the parameter space and an initial value set
Step 2: Process a simulation with the initial value set

Step 3: For each parameter, process simulations at s steps T the initial value. Values for all
other model parameters held constant.

Step 4: Apply the ANOVA to the ensemble of predictions to determine the critical
parameter list

Bi-material strip CPS process:
Step 1: 20-dimensional parameter space, initial values defined by nominal properties
Step 2: Simulation processed with nominal material properties

Step 3: Starting with s=1 and step size= (max value — nominal value) /s, independently
process simulations along each dimension.

Step 4: ANOVA applied to resulting 41 predictions to generate critical parameter list

Step 5: Repeat steps 3-4 with incrementally increasing s until critical parameter list is
converged

S
Samplescps = 1+ 2 Z Ng
=

Parameter 1

Parameter 2

® Indicates a sample i



17 | Design of Experiments: Box-Behnken Design (BBD)

One DOE method was selected for consideration — BBD

BBD does not sample outside of parameter space, requires
fewer samples than other DOE methods

General BBD approach:
Step 1: Define the parameter space with minimum, maximum, mean values

Step 2: Parameter combinations are created at the center and midpoints of the
process space edges.

Step 3: A simulation is processed at each parameter combination

Step 4: Apply the ANOVA to the ensemble of predictions to determine the

critical parameter list

Bi-material strip BBD process:
Step 1: 20-dimensional parameter space
Step 2: BBD specified 761 parameter combinations
Step 3: 761 simulations were processed

Step 4: ANOVA applied to resulting 761 predictions to generate critical
parameter list

Samplesggp = 1+ 2k(k — 1)

Parameter 1

. Parameter 2

Parameter 3 I

® [ndicates a sample



18 | Sampling Methods: Monte Carlo (MC) _ I

Two sampling methods were considered — MC and LHS I
MC 1s simple and easy to implement with any deterministic FE code

LHS 1s more complex, but provides better parameter space coverage with fewer samples

Monte Carlo (MC)
Completely random sampling

No guarantee that any number of samples will cover parameter space
Convergence is assured, but a prohibitive number of samples may be required
General approach:
Step 1: Define the parameter space with minimum, maximum values
Step 2: Define the desired number of samples, N
Step 3: Process IN simulations
Step 4: Apply the ANOVA to the IN predictions to determine the critical parameter list
Bi-material strip MC process: I
Step 1: 20-dimensional parameter space
Step 2: Initial samples size = 22, or n+2 0
Step 3: Process 22 simulations
Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list
Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list is converged I



19 | Sampling Methods: Latin HyperCube Sampling (LHS)

Latin HyperCube Sampling (LHS)
Stratified sampling technique

If N samples are desired, each parameter space dimension is divided into N
segments of equal probability

Relative length of segments governed by probability distributions

N samples placed throughout parameter space grid — One, and only one, sample can be

placed in each bin
Better coverage of parameter space!
General approach:
Step 1: Define the parameter space and probability distributions for each parameter
Step 2: Define the desired number of samples, N — Stratify parameter space
Step 3: Process NN stratified simulations
Step 4: Apply the ANOVA to determine the critical parameter list

Bi-material strip LHS process:
Step 1: 20-dimensional parameter space, uniform distributions for all parameters
Step 2: Initial samples size = 22, or n+2
Step 3: Process 22 simulations
Step 4: ANOVA applied to resulting 22 predictions to generate critical parameter list

Step 5: Repeat steps 2-4 with incrementally increasing N until critical parameter list
is converged

Parameter 1

® [ndicates a sample

Parameter 2




Surrogate Methods: Polynomial Chaos Expansion (PCE) N |
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Two surrogate methods were considered — PCE and GP I

General surrogate model approach:

Minimally sample the parameter space to find a numerical function defining the relationship between the desired model output and the
design variables

Sample the surrogate model 1000’ of time at negligible cost :
Polynomial Chaos Expansion (PCE) — Stochastic expansion method
Multivariate orthogonal polynomials build the functional relationship between a response function and its random inputs
Polynomials are tailored to the specific input parameter distribution types — Legendre polynomial represent uniform distributions
Polynomial coefficients found through regression
LLHS samples of the parameter space build a response function set that is fit with polynomials of varying order — Cross-validation determines best
polynomial order
General Approach: Bi-Material Strip PCE process:
Step 1: Define the parameter space and probability distributions for each Step 1: 20-dimensional parameter space, uniform distributions for all
parameter parameters I
Step 2: Define the desired number of LHS samples (IN), stratify parameter Step 2: Initial samples size = 21, or #+7 — response function set size = 21
sfprit, prroess IV it fudl s ditto i Step 4: PCE surrogate built considering polynomial orders 1-5 I

Step 4: Build the PCE surrogate using cross-validation to determine the best

h 1 ord Step 5: 10000 samples were taken of the PCE surrogate
polynomial order

Step 6: ANOVA applied t Iting 10000 predictions t te critical
Step 5: Sample the surrogate model 1000’s of times paigme el appriec to resutting predictions to generate critica
Step 6: Apply the ANOVA to the surrogate samples to determine the critical

parameter list

Step 7: Repeat steps 2-6 with incrementally increasing [N until critical
parameter list is converged



,, | Surrogate Methods: Gaussian Process (GP)
Gaussian Process (GP)

All finite dimensional distributions must have a multivariate normal, or Gaussian, distribution

Example: Given a stochastic process, X, that is a function of the variables within a set T, for any choice of distinct values of T,
the corresponding vector X must have a multivariate normal distribution

Normal distribution can be described by the finite dimensional distribution’s mean and covariance functions — the Gaussian
distribution i1s defined

General Approach:
Step 1: Define the parameter space and probability distributions for each parameter
Step 2: Define the desired number of LHS samples (IN), stratify parameter space, process N stratified simulations
Step 4: Assume response function set adheres to a Gaussian distribution and build the GP surrogate
Step 5: Sample the surrogate model 1000’ of times
Step 6: Apply the ANOVA to the surrogate samples to determine the critical parameter list

Bi-Material Strip GP process:
Step 1: 20-dimensional parameter space, uniform distributions for all parameters
Step 2: Initial samples size = 21, or #+7 — 1nitial response function set size = 21
Step 4: GP surrogate was built
Step 5: 10000 samples were taken of the GP surrogate
Step 6: ANOVA applied to resulting 10000 predictions to generate critical parameter list
Step 7: Repeat steps 2-6 with incrementally increasing N until critical parameter list 1s converged



Results and Conclusions




23

Comparison of Sensitivity Analysis Methods

Surrogate methods require the fewest samples for a converged
list of critical parameters

GP may be preferred, slightly easier to implement

Sampling methods are the least efficient approaches — 4-8x
more expensive than surrogate methods

MC/LHS are simple to implement with any deterministic FE code

Merit consideration when lacking access to iterative analysis tools

BBD is more efficient than the sampling methods, but twice as
expensive as the surrogate methods

DOE methods are less complex than surrogates, can be
implemented with any deterministic FE code

Should be considered as preferred alternative to sampling methods
when lacking access to iterative analysis tools

CPS provides a reasonable critical parameters list at a low
number of samples, but seems to omit some of the less
influential critical parameters

Should be considered when a measure of sensitivity is required, but
only a handful of samples are computationally affordable

]
| Method [Sample #|E. | Ex

CPS

MC

LHS

PCE

GP

81 |
44|

|84 |

168

336 |
21 [ ]|

BN

=




Material Parameter Criticality

Summary of critical parameters:
All methods selected as critical: Eqy, Eqy, 041, 031 g Ty Top Enp tp)
In-plane mechanical/thermal properties of CFRP and aluminum propetties should be critical
Residual stress development governed by in-plane CFRP/Al contraction mismatch
T, and Ty; should be critical
T indicates when residual stresses begin to develop

T, governs rate of stress development
All methods, excepr CPS, selected as critical: vy, o,
All methods, excep? CPS and BBD, selected as critical: vy,

Only surrogate methods selected: oy,

Vi %G VA oo r May be less influential

PCE surrogate can determine Sobol indices
Sensitivity indices — rank critical parameters by relative influence
Parameters selected by some, but not all, methods as critical of the lowest indices
The most significant indices govern the development of thermal strains

oy 1S most significant by a large margin

In-plane CTE of CFRP K CTE of aluminum — aluminum thermal contractions drive residual stress
development

98.003763%

1.091548%
0.363556%
0.354474%
0.059520%
0.056149%
0.027971%
0.001954%
0.000305%
0.000301%
0.000295%
0.000018%
0.000000%
0.000000%
0.000000%
0.000000%
0.000000%
0.000000%
0.000000%
0.000000%




25 © Final Summary and Conclusions _ I

Residual stresses should be considered when designing composite parts I

Finite element simulation of residual stresses may be preferred to experimental measurement

Sandia’s process modeling approach requires 20+ material parameters L
Sparse experimental resources can make rigorous characterization impractical

Sensitivity surveys can be used to allocate experimental resources

A survey of DAKOTA’s sensitivity survey capabilities was completed with a process model
of a mesh-optimized, bi-material CFRP/Aluminum strip

What is the ideal sensitivity study approach?
GP/PCE surrogates demonstrated the best computational efficiency
BBD approach should be used if there is no access to an iterative analysis toolkit
CPS should be used if parameter sensitivity is desired for an expensive model I

Suggested methodology can be applied generally, not just to process modeling of composites
Which model parameters are most critical to a composite’s residual stress predictions? .

In-plane mechanical and thermal properties — in-plane contractions govern residual stress development at the bi-material interface

Stress-free and glass transition temperatures — T, and T; govern when and with what rates residual stresses develop



Thank you!




