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Fig. 1. VoroCrust main steps and results. From left to right: input CAD model with sharp features, corner spheres, edge spheres, surface spheres,
surface mesh (unclipped Voronoi facets), and conforming Voronoi mesh.

Polyhedral meshes are increasingly becoming an attractive option
with particular advantages over traditional meshes for certain
applications. What has been missing is a robust polyhedral meshing
algorithm that can handle broad classes of domains exhibiting
both curved boundaries and sharp features. In addition, the power
of primal-dual mesh pairs has been recognized as an important
ingredient in multiple formulations. The VoroCrust algorithm is the
first provably correct algorithm for conforming Voronoi meshing
for non-convex and possibly non-manifold domains with guarantees
on the quality of both surface and volume elements. A robust
refinement process estimates a suitable sizing field that enables
the placement of Voronoi seeds across the surface eliminating the
need for clipping. The algorithm has the flexibility of filling the
interior by either structured or random samples, while all sharp
features are preserved in the output mesh. We demonstrate the
capabilities of the algorithm on a variety of models and compare
against state-of-the-art clipping-based methods establishing the
clear advantage of VoroCrust output.
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1 INTRODUCTION

The computational modeling of physical phenomena requires
robust numerical algorithms and compatible high-quality do-
main discretizations. Finite element methods traditionally use
simplicial or hexahedral meshes. Generalizations to arbitrary
polyhedral elements have recently gained increasing attention
in computer graphics [Martin et al. 2008], physically-based
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simulations [Bishop 2014], applied mathematics [Manzini et al.
2014], computational mechanics [Gain et al. 2014a] and com-
putational physics [Lipnikov et al. 2014]. To ensure the fidelity
of the discrete model, the fundamental properties of contin-
uum equations have to be preserved [Desbrun et al. 2008]. A
well-principled framework is enabled through the combined
use of primal meshes and their orthogonal duals [Mullen et al.
2011]. The power of orthogonal duals, exemplified by Voronoi-
Delaunay meshes, has recently been demonstrated on a range
of applications in computer graphics [Goes et al. 2014] and
computational physics [Engwirda 2018].
While the generation of tetrahedral meshes based on De-

launay refinement [Cheng et al. 2012] or variational opti-
mization [Alliez et al. 2005] is well established, research on
general polyhedral meshing is less mature. In this paper, we
present VoroCrust: the first algorithm for meshing arbitrary
non-convex, non-smooth, and possibly non-manifold domains
by conforming Voronoi meshes. The crux of the algorithm is
a robust refinement procedure that converges to a suitable
sizing estimate yielding an isotopic volumetric mesh with
guaranteed bounds on the quality and gradation of mesh
elements while preserving all sharp features.

1.1 Background

Conventional mesh elements, as in tetrahedral and hexahe-
dral meshes, often require excessive refinement when modeling
complex geometries or domains undergoing large deforma-
tions, e.g., cutting, merging, fracturing, or adaptive refine-
ment [Chen et al. 2014; Clausen et al. 2013; Wicke et al. 2010;
Wojtan et al. 2009]. On the other hand, polyhedral elements
can more easily adjust to deformation [Gain et al. 2014b;
Martin et al. 2008] and topological changes [Wu et al. 2015],
and are less biased to principal directions compared to regu-
lar tessellations [Talischi et al. 2013]. In addition, polyhedral
elements typically have more neighbors, even at corners and
boundaries, enabling better approximations of gradients and
possibly more accurate solutions using the same number of
conventional cells [CD-adapco 2014].

Unfortunately, robust algorithms for meshing general do-
mains into polyhedra are still lacking. State-of-the-art ap-
proaches often rely on clipping, i.e., truncating cells of an
initial mesh to fit the domain boundaries [Yan et al. 2010].
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Fig. 2. VoroCrust handles different types of inputs and is capable of producing variable outputs depending on the user-application. This includes
smooth (left), sharp-feature (second left) input surfaces, disconnected components (second right), and multiple material (right). VoroCrust allows
different types of interior-fill Voronoi seeds e.g., random (right), seeds sampled from a grid (middle), or be subject of CVT optimization (second
right).

Such an initial mesh can be obtained as a Voronoi mesh,
e.g., with sites randomly generated inside the domain [Ebeida
and Mitchell 2012] or optimized by centroidal Voronoi tes-
sellations (CVT) [Yan et al. 2010]. Alternatively, an initial
Voronoi mesh can be obtained by dualizing a conforming tetra-
hedral mesh [Garimella et al. 2014a]. Although no clipping is
needed if the tetrahedralization is well-centered, generating
such meshes is a very challenging problem [VanderZee et al.
2010]. A weaker Gabriel property ensures all tetrahedra have
circumcenters inside the domain and can be guaranteed for
polyhedral domains with bounded minimum angles [Si et al.
2010]; however, the dual Voronoi cells still need to be clipped.

While clipping is direct and efficient, it fails to produce true
Voronoi cells, sacrificing key geometric properties [Ebeida and
Mitchell 2012]. Specifically, clipping at sharp features may
yield cells that are not convex, or even star shaped, which
can be problematic for several applications [Beirdo da Veiga
et al. 2014; Wicke et al. 2007], e.g., for barycentric interpo-
lation [Warren et al. 2007]. More importantly, a polyhedral
Voronoi mesh has an orthogonal dual defined by the corre-
sponding Delaunay mesh [Aurenhammer et al. 2013]. The
combined use of primal meshes and their orthogonal duals has
been recognized as an important framework for computational
modeling [Desbrun et al. 2008; Mullen et al. 2011]
Orthogonal primal-dual mesh pairs are a class of unstruc-

tured staggered meshes [Harlow and Welch 1965] with desir-
able conservation properties [Perot 2000], enabling discretiza-
tions that closely mimic the continuum equations being mod-
eled [Bochev and Hyman 2006; Desbrun et al. 2008]. The
power of orthogonal duals [Mullen et al. 2011] was recognized
in early works on structural design [Maxwell 1870; Rankine
1864] and numerical methods [Macneal 1953], and has recently
been demonstrated on a range of applications in computer
graphics [Goes et al. 2014], mesh parameterization [Mercat
2001], self-supporting structures [Akbarzadeh et al. 2015],
and computational physics [Engwirda 2018]. In particular,
Voronoi-Delaunay meshes are the default geometric realization
to numerous formulations in numerical methods [Nicolaides
and Wu 1997], fluid animation [Elcott et al. 2007], fracture

modeling [Sukumar and Bolander 2009], and computational
cell biology [Novak et al. 2007].

Despite many attempts to design a robust Voronoi meshing
algorithm, a general solution to the problem remained elu-
sive. For example, the TOUGH2 simulator for mass and heat
transport in porous media [Pruess 1991] computes gradients
along nodal lines connecting neighboring cells, and hence
requires that these dual edges are orthogonal to the common
primal facet [Pruess 2004]. Several heuristic approaches to
the generation of Voronoi meshes for TOUGH2 were devel-
oped [Bonduà et al. 2017; Freeman et al. 2014; Hu et al. 2016;
Kim et al. 2015; Klemetsdal et al. 2017]. The situation is
further complicated for multi-material domains, where the
difficulty of generating conforming meshes necessitates deal-
ing with mixed elements straddling the interface between
multiple materials [Dawes 2017; Garimella and Lipnikov 2011;
Kikinzon et al. 2017].

1.2 Contributions

The VoroCrust algorithm is the first algorithm for conforming
Voronoi meshing that can handle a large class of domains with
both curved boundaries and arbitrarily sharp features. The
crux of the algorithm is a robust refinement procedure that
converges to a suitable sizing function enabling the placement
of Voronoi seeds to approximate the surface. The algorithm
eliminates the need for clipping, which is the current state-of-
the-art for Voronoi meshing, successfully avoiding its draw-
backs. The algorithm has the flexibility of decomposing the
interior using either structured or randomly generated seeds.
A careful implementation is able to guarantee the quality
of the output mesh both on the surface and in the interior.
We demonstrate the application of the algorithm through a
variety of challenging models and compare against state-of-
the-art clipping-based methods establishing the advantage of
the VoroCrust algorithm.
The rest of the paper is organized as follows. We start

by surveying related work in Section 2. Then, we present
the VoroCrust algorithm in Section 3. We demonstrate the
capabilities of the algorithm and compare its output against
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state-of-the-art in Section 4. We discuss the limitations of
the algorithm in Section 5. Finally, we conclude highlighting
potential directions for future work in Section 6.

2 RELATED WORK

We summarize the most relevant related work under two
categories: Voronoi meshing and surface reconstruction. For
background on meshing models with sharp features, see Dey
and Levine [Dey and Levine 2009] and Cheng et al. [Cheng
et al. 2010] and the references therein.

2.1 Voronoi Meshing

Polyhedral meshing is an increasingly important area, both
in research and in commercial contexts [Beirdo da Veiga
et al. 2014; Bishop 2009; Bolander and Sukumar 2005; Oaks
and Paoletti 2000; Rashid and Selimotic 2006]. It is used
for a variety of dynamic simulations, including complex time-
dependent multiphysics such as mechanical operation, stresses,
multiphase materials, combustion and chemical reactions,
electromagnetics, heat, and acoustics. Polyhedral dual meshes
are currently useful for fracture simulations, material grain
modeling [Bishop 2009], and topology optimization [Cameron
et al. 2010].
Polyhedral meshes have advantages over other types (e.g.,

tetrahedral) in terms of filling space with fewer elements
for the same number of vertices, computing numerical gradi-
ents and flux, tolerating stretched elements, axis-insensitivity,
etc. [Chin et al. 2015]. Voronoi meshes are one type of poly-
hedral meshes where facets are strictly planar. Each Voronoi
cell includes all the points in the domain closer to its seed
than any other seed, which results in the natural convexity
and positive Jacobians of Voronoi cells.
Many prior techniques create a Voronoi mesh of a vol-

ume [Ebeida and Mitchell 2011; Lévy and Bonneel 2013; Yan
et al. 2010, 2013]. They involve creating or moving seeds,
forming their Voronoi cells, then clipping the cells by the
model's boundary. The surface mesh matches the geometry
of the manifold, but is unconstrained by any prior sample
locations, and the samples are not (the only) vertices of the
surface mesh. That is, meshing techniques do not simulta-
neously solve the surface reconstruction problem. Interior
seeds may by created by dualizing a well-centered tetrahedral
mesh [de Goes et al. 2014; Garimella et al. 2014b; VanderZee
et al. 2010], or by direct sampling [Ebeida and Mitchell 2011].
The Voronoi seeds may also be moved through an optimiza-

tion to generate initial or improved seed locations [de Goes
et al. 2014; Du et al. 2010, 2003; Du and Wang 2005; Sieger
et al. 2010]. A Centroidal Voronoi Tessellation (CVT) can
be used to orient seeds with a field while preserving sharp
features. Using an 4-distance function, it is possible to create
an arrangement of seeds so that many primal (tetrahedral)
elements can be combined into cubical (hex) cells [Lévy and
Liu 2010]. CubeCover [Nieser et al. 2011] also creates a hex-
dominant mesh using a frame field by first generating a 3D
parameterization of the volume.
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Although clipping methods are direct and easy to imple-
ment, their output cells are not truly Voronoi cells, sacrific-
ing several key geometric properties [Ebeida and Mitchell
2011]. Boundary cells are ill-shaped if the surface is ill-shaped.
For curved surfaces, facets may be non-planar. Moreover,
sharp features may yield cells that are not convex, or even
star shaped; an important precondition for several applica-
tions [Beitho da Veiga et al. 2014].
An abstract version of the VoroCrust algorithm for smooth

surfaces was analyzed by the authors [Abdelkader et al. 2018],
under the assumption that an epsilon-sampling is provided
as input. Assuming access to the local feature size, we es-
tablished strong theoretical guarantees on the quality of the
resulting Voronoi mesh in that restricted setting. In an ear-
lier phase of this work, we explored the related problem of
generating a Voronoi mesh that conforms to restricted classes
of piecewise-linear complexes, with more challenging inputs
left for future work [Abdelkader et al. 2017]. The approach
adopted in [Abdelkader et al. 2017] does not use a union of
balls and relies instead on similar ideas to those proposed
for conforming Delaunay meshing [Cohen-Steiner et al. 2002;
Murphy et al. 2001; Rand and Walkington 2009]. In contrast,
the present submission describes the VoroCrust algorithm,
as implemented in the VoroCrust software, which is based
on a robust and practical refinement procedure that esti-
mates a suitable sizing function for domains with possibly
non-manifold boundaries exhibiting arbitrarily sharp features
and narrow regions, enabling the placement of Voronoi seeds
to capture a faithful approximation of the bounding sur-
face preserving all sharp features while having the flexibility
of meshing the interior using either structured or random
Voronoi cells.

2.2 Surface Reconstruction

Surface reconstruction is motivated by numerous computer
graphics applications [Berger et al. 2016; Yu 1999], reverse
engineering [Toll and Cheng 1999; Várady et al. 1997], and
computer vision, e.g., visualization [Katz and Tal 2015] and
reconstruction of faces from images [Piotraschke and Blanz
2016]. In a typical design workflow, a prototype model is
scanned to obtain a mesh for numerical simulations. To satisfy
boundary conditions, the generated mesh has to conform to
the model boundary.
Given a set of sample points from the surface of a model,

surface reconstruction [Dey 2011] aims to approximate the
surface as part of the output mesh. This is a challenging
problem due to a number of factors including inaccuracies
due to sampling noise and nonuniformity [Estellers et al.
2015; Kolluri et al. 2004], topology constraints [Zou et al.
2015], variable sample density [Marton et al. 2009], and the
dependence on an approximation of the medial axis to preserve
complex features, which is often unstable. Scalability to large
data sets with minimal post-processing is another requirement
for surface reconstruction tools [Boltcheva and Levy 2016].
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Algorithm 1: High-level VoroCrust algorithm

Input: PLC T approximating the domain 0,
and parameters 0, L and sz (Section 2.1)

• the set of sharp features w.r.t. 0 (Section 2.2)
• a set of balls protecting all features in (Section 2.3)
while U does not cover T do

Add balls to recover protection of .F and cover T
Shrink balls violating any ball conditions (Section 2.3)

or forming 4-way overlaps (Section 2.4)
end
St F pairs of seeds from triplets of overlapping balls in .6
• seeds sampled from the interior of 0\11 (Section 2.5)
return Vor(St U 844)

3 THE VOROCRUST ALGORITHM

The crux of the algorithm is the generation of a set of weighted
surface samples corresponding to a set of balls 13 whose union
U = U8 approximates M. Specifically, U covers M and has
the same topology. In addition, U captures the sharp features
of M. To further guarantee the quality of surface approx-
imation, the radii of surface balls vary smoothly and are
sufficiently small w.r.t. the local curvature of M. In other
words, the radii of balls in B mimic a local feature size for M.
Finally, certain configurations of balls are perturbed to avoid
having slivers in the resulting surface mesh. These require-
ments are used to design a refinement process that converges
to a suitable union of balls. The conforming surface mesh is
obtained by essentially dualizing U to obtain a set of Voronoi
seeds St. Once U is obtained, the interior is easily meshed by
sampling additional seeds 844 outside U. The output mesh is
then computed as a subset of the Voronoi diagram of the seeds
in U S. In the remainder of this section, we elaborate on
these steps per the high-level pseudocode above.

3.1 Input

The proposed algorithm can handle a domain O having as
boundary a possibly non-manifold piecewise-smooth complex
(PSC) M. The algorithm takes as input a watertight piecewise-
linear complex (PLC) T approximating the boundary M. As
in [Dey and Ray 2010], we assume that T approximates M in
terms of both the Hausdorff error and the surface normals; this
enables various predicates to be evaluated using the input
PLC rather than the equations describing the underlying
PSC [Cheng et al. 2010]. For the current implementation,
we assume the input is a triangle surface mesh with no self-
intersection. Well-established methods can be used to obtain
such a mesh given a suitable representation of the domain
[Dey and Levine 2009; Hu et al. 2018; Tournois et al. 2009].
The boundary PSC M possibly contains sharp features

where the normal to the surface does not vary smoothly.
We make no assumption on how small the angles subtended
by sharp features might be. The algorithm is provided with
an angle threshold 6, which is used to identify a set of sharp
features in the PLC T. The algorithm guarantees that all such
sharp features are preserved; sharp corners appear exactly as

vertices, while sharp edges are approximated by a set of edges
in the output mesh. The algorithm is also provided with a
smoothness parameter L that bounds the variation of radii in
8. The behavior of the refinement process depends crucially
on both 6, and L; see Section 2.3. Finally, the parameter sz,
set to the diameter of T by default, is a sizing field that can
be used to bound the size of elements in the output mesh.

3.2 Preprocessing

Before initiating the refinement process, the algorithm classi-
fies and indexes the elements of the input PLC T. Then, this
information is used to construct a number of data structure
for proximity queries against T and U.
We define a sharp edge as an edge of T subtending a

dihedral angle less than O. All non-manifold edges incident to
more than two facets are also treated as sharp edges. Similarly,
a sharp corner is defined as a vertex of T incident to two
facets whose normals differ by at least 6,, or two sharp edges
making an angle less than 6,, or more than two sharp edges.
A polyline arising from a chain of connected sharp edges
is called a crease, and either forms a cycle or connects two
sharp corners. The connected components of the boundary
containing no sharp features, denoted Ts, are called surface
patches, and are possibly bounded by creases. The collection
of sharp corners, creases and smooth patches are collectively
referred to as the features of T.
The algorithm uses B to test each edge in T, and collects all

sharp edges in a set E. Then, each vertex is tested using E and
6,, and the sharp corners are collected into the set .Fc. From
E and .Fc, sharp edges are collected into the set of creases
.FE by label propagation through common vertices except for
sharp corners. As a byproduct, each crease is given an index
and an orientation, applied consistently to all its sharp edges.
Similarly, the facets of T are indexed, oriented and collected
into the set of smooth patches Ts by label propagation across
non-sharp edges. Finally, we set .F = .Fc U FE.
Upon generating a new sample point p E T, the algorithm

needs to find the balls in .8 covering p, and estimate its
distance to the elements of T satisfying certain conditions
w.r.t. O. Depending on whether p lies on an element in .Fc,
.FE or Ts, the queries need to be restricted to the respective
set. To speed up such queries, the algorithm constructs three
augmented kd-tree to index the elements in each set. The
kd-trees for .FE and Ts are populated by supersampling the
respective elements; see the supplementary materials for the
details. Similarly, the balls in 13 are indexed into three kd-
trees.

3.3 Ball Refinement

At a high level, the desired union of balls U has to (1) protect
the sharp features of T, and (2) cover T while matching its
topology. The proposed algorithm achieves this through a set
of ball conditions imposed on the balls in 8. Violations of
these conditions drive a refinement process which converges
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to a suitable union of balls. Before describing this process, we
introduce a number of definitions and subroutines.
Smooth neighborhoods Fix a point x E T and let 0- be

a face of T containing x. If cr is a sharp edge, define yx,c. as a
unit vector parallel to cr. If cr is a smooth patch, define yx,a as
a unit vector normal to (Y. '21,0- inherits the orientation of the
crease or smooth patch containing cr. A path -y lying entirely
in a unique crease or smooth patch E is called a smooth path
iff for all x, y E ,y we have that Lyx,,, y,,,- < 0, where a and
T are the two top-dimensional faces of E containing x and
y, respectively. Two points x, y E T are called co-smooth iff
they can be connected by a smooth path.
Ball conditions For a sample point p E T, let bp E 13

denote the ball centered at p and rp denote its radius.
(C1) Coverage For any 131, E B and all x E bP fl T, we

require that p and x are co-smooth.
(C2) Overlap For any bp,b, E 8 s.t. bp fl bq 0, we

require that bP U bq contains a smooth path from p to q.
(C3) L-smoothness For any two balls bp,bq E B such

that either p, q E .Fc or both p and q lie on the same crease
or smooth patch, we require that rp < rq L • 111)
Sizing estimation A sizing assigns to each new sample p

a radius rp. We seek a sizing that satisfies all ball conditions.
The algorithm computes such a sizing by dynamically evolving
the assignments I-, for each ball bp E B in the course of
the refinement process. To speed up convergence, a newly
generated ball bp is initialized with a conservative estimate
which is more likely to satisfy all ball conditions. To help
avoid coverage violations, we query the feature kd-trees using
p to obtain a surrogate point q for the closest non-co-smooth
point on T. We set rp = min(sz, 0.49 •11/) — 4'11).
Sampling basics The refinement process uses Maximal

Poisson-Disk Sampling (MPS) [Ebeida et al. 2011; Gamito
and Maddock 2009] to generate the sample points needed
to protect the creases and cover the smooth patches. The
MPS algorithm maintains an active pool of faces, initialized
by all faces on the feature to be meshed. Each face in the
active pool can be chosen for sampling with a probability
proportional to its measure, defined as the length for edges or
area for facets. To generate a new sample p, the chosen face is
sampled uniformly at random. If p is not covered by the balls
in B, it is assigned a radius rp and the ball bp is added into
B. Otherwise, the algorithm increments a miss counter and
discards p. When the miss counter reaches a preset maximum
value, taken as 100 in our implementation, all faces in the
active pool are subdivided into subfaces and the counter is
reset; edges are split in half and facets are star-decomposed.
The algorithm discards any subface that is completely covered
and the remaining subfaces become the new active pool.
Deep coverage For any point x E T, we require a stronger

form of coverage by the balls in B. We say that x E T is deeply
covered by a ball bp E B, for a < 1, if 11P — x11 < cx • rp; we set
= 0.5 in our implementation. The reason for that is two fold.

First, any point x in the proximity of a crease E must be closer
to the weighted samples on E than the samples on any other
feature of T. Second, to ensure a sufficient distance between
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the pairs of seeds generated by triplets of overlapping balls,
we require that adjacent balls intersect deeply. The refinement
process achieves this by modifying the coverage test for MPS
as follows. First, a new sample is only accepted if it is not
deeply covered. Second, upon subdividing a face in the active
pool, a subface is discarded only if it is completely deeply
covered by a single ball. To apply this coverage test to a
point x E T, the algorithm finds the nearest sample of each
type using the respective ball kd-tree. Then, the algorithm
queries the trees for neighboring balls and checks whether
deep coverage condition is satisfied for any of these balls.
Detecting violations Before MPS discards a subface, the

algorithm checks for violations of C1 and shrinks encroaching
balls as necessary. A subface is safely discarded only if of its
points are deeply covered by a single ball with a co-smooth
center. The algorithm checks for potential violations of C3 by
checking the neighboring balls of any ball that gets shrunk;
shrinking possibly cascades through a relatively large fraction
of the balls in B until C3 is satisfied. The algorithm only
checks for violations of C2 before terminating the refinement
phase. The reason is that C2 requires checking the existence
of a smooth path, which is an expensive operation involving
the computation of geodesics on T. Hence, checking this
condition is deferred as long as there is a chance that balls
may be shrunk to satisfy the other conditions.
Protection and coverage The refinement process is real-

ized as a recursive MPS (RMPS) algorithm that goes through
three phases, ordered by the dimension of the underlying fea-
ture, starting with the protection of sharp corners to the pro-
tection of creases and finally the coverage of smooth patches.
At each phase, if refinement shrinks any of the balls belong-
ing to a previous phase, the algorithm recurses by rerunning
RMPS on the affected lower dimensional feature before pro-
ceeding. The process starts by initializing the set of balls with
one corner ball centered at each sharp corner. As the base
case of RMPS, the algorithm enforces C3 among corner balls
by brute-force, i.e., each ball is checked against the rest and
is shrunk as needed. Then, each crease E is protected by a
set of edge balls by running RMPS on E. If any corner ball
has to be shrunk, RMPS recurses to adjust corner balls. After
successfully protecting all creases, the algorithm proceeds to
cover each smooth patch E by running RMPS on E. Similarly,
if any corner or edge ball has to be shrunk, RMPS recurses
to the respective phase.
We point out that extra care is needed to avoid the well-

known clustering phenomenon resulting from the greedy gen-
eration of samples. This can be mitigated by biasing the
sampling to avoid introducing new sample points at the bound-
aries of existing balls. In addition, non-manifold boundaries
require a slight adjustment of the smoothness condition. We
defer these details to the supplementary material.

3.4 Sliver Elimination

Before terminating the refinement process, the algorithm
restarts RMPS to search for problematic configurations of
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balls. Observe that if coverage is completed, with all ball con-
ditions satisfied, no additional samples would be added. The
algorithm proceeds with facet subdivision and keeps track
of subfaces that lie completely in a single ball. A subface
that lies completely in the intersection of 3 balls is called
a witness to the 3-way overlap of those balls; any subface
overlapping less than 3 balls is discarded. For every triplet
of overlapping balls, the algorithm computes the potential
Voronoi seeds arising on the intersection of their bounding
spheres. Then, the algorithm checks for half-covered seeds, i.e.,
pairs of seeds where exactly one seed is contained in a fourth
ball of 13. The presence of half-covered seeds results in extra
undesirable Steiner vertices one the surface of the output
mesh [Abdelkader et al. 2018]. The facets incident to such
Steiner vertices may not be aligned with the input surface,
which decreases the quality of the resulting surface mesh. To
eliminate these defects, the algorithm resolves half-covered
seeds by shrinking some of the balls in such problematic con-
figurations; see the supplementary materials for more details.
After shrinking, the algorithm restarts the refinement process
to recover the protection and coverage properties of 13 while
satisfying all ball conditions. Finally, to speed up convergence,
the resolution of half-covered seeds is interleaved with the
refinement process; refer to the supplementary material for
an evaluation of this strategy.

3.5 Volume Meshing

Once the refinement process terminates, the set of balls B is
fixed and a conforming surface mesh can be generated. To fur-
ther decompose the interior into a set of graded Voronoi cells,
additional weighted samples are generated in the interior of
the domain. Similar to surface balls, the balls corresponding
to interior samples are required to satisfy the L-smoothness
condition. Standard MPS may be used for sampling the inte-
rior. However, to reduce the memory footprint of this step, the
spoke-darts algorithm is used instead [Mitchell et al. 2018];
see the supplementary materials for details. Alternatively, the
interior samples may be chosen as the vertices of a structured
lattice; this can be used to output a hex-dominant mesh
conforming to the surface. The quality of the resulting vol-
ume mesh can be further improved by applying CVT before
computing the Voronoi diagram.

4 RESULTS

We demonstrate the capabilities of the VoroCrust algorithm
on a variety of models ranging from smooth models as in
Figure 3 to models with sharp features as in Figure 4. In
both cases, we report the quality of surface approximation in
terms of the Hausdorff error (as a percentage of the diagonal
of the bounding box), the root mean squared distance, the
minimum triangle quality, as well as the percentage of surface
triangles with angles less than 30 or more than 90 degrees.
To assess the quality of volumetric cells, we report the worst
aspect ratio over the entire mesh.

Qm— e<30% e>90% V6% dH(X 10 2) dRms(x 10 3) Am.
0.37 2 16 41 0.614 0.782 ??

Qmin 0<30% 0>90% V6% di/(X10-2) dRms(X10-3) Prnm
0.35 1.8 16 40 0.332 0.588 ??

Qmi. 0<ao% 0>9o% V6% dH(x10-2) dRitls(x 10-3) Pmm
0.39 2 16 40 0.628 0.832 ??

Q min <30% O>90% V6% dif(x 10-2) dRms(x 10-3) pmsn
0.4 0.07 15 50 0.851 2.392 ??

Fig. 3. Qmin is the minimum triangle quality. 61<30% and 8>90% are
the percentage triangles with angle < 30° and > 90°, respectively.
V6% is the percentage of surface mesh vertices with valence 6. dRMS is
the root mean square distance and dH is Hausdorff distance normalized
by the diameter of the bounding box. pmi„, is the minimum Voronoi
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Qmin e<30% e>90% V6% dB- ( X 10-2) dRMS(x 10-3) pmzn
0.1 16 21 33 0.266 0.754 ??

Qmin O<30% O>90% V6%
0.273 11 19 35

• •• •

dx(x10-2) s(x 10-3)
0.087 0.124 ??

Qmin e<30% O>90% V6% dx(x10 2) dRms(x10 3) pmin
0.221 14 22 33 0.202 0.205 ??

Qmin e<30% e>90% V6% dH(x10 2) dmus(x10 3 )

0.0303 14 21 36 0.098 0.398 ??

Qmtn 0<30% O>90% V6% (x10-2) dRms(x10-3) Pm,.
0.236 35 30 27 0 0 ??

mtre <30% O>90% V6% dx(x10-2)
0.2 29 30 29 0.025

Fig. 4. .

dRivis(x10-3) Pmzn
0.0032 ??
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Fig. 5. Clipping Voronoi cells [Yan et al. 2010] is sensitive to the input
surface tessellation (left). VoroCrust (right) is capable of producing
high quality surface mesh alongside the 3D Voronoi mesh.

Fig. 6. Clipping Voronoi cells near the surface boundaries may destroy
the Voronoi cells convexity (left). VoroCrust (right) guarantees to
produce convex Voronoi cells everywhere irregardless to the surface
boundaries.
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To further demonstrate the advantage of the VoroCrust 775

algorithm against state-of-the-art methods based on clipping, 776

we compare against the restricted Voronoi diagram (RVD) 777

of [Yan et al. 2009]. As shown in Figures 5, VoroCrust exhibits 778

superior quality in terms of the surface mesh, where the RVD 779

exhibits an imprint of the input mesh with many small facets. 780

For the non-convex domain in 6, the RVD results in non- 781

convex cells in the decomposition while VoroCrust is able 782

to conform to the boundary with true Voronoi cells while 783

maintaining the quality of the surface elements. 784

785

5 LIMITATIONS 786

The main limitation of the presented algorithm is the apparent 787

restriction on the placement of surface seeds. In particular, 788

this limits the quality of Voronoi cells in the vicinity of the 789

surface. While mesh improvement techniques can be applied 790

to perturb bad elements, this risks compromising the surface 791

approximation. The most troubling aspect is the presence 792

of short Voronoi edges in the output mesh, which can be a 793

limiting factor in many applications. 794

Another limitation is the isotropic nature of the proposed 795

sampling routine. This potentially leads to the generation 796

of an unnecessarily large number of cells in narrow regions. 797

798
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This can be mitigated by utilizing so-called boundary layers
of elongated cells that better match the boundary.

Finally, the algorithm the input triangulation is a faithful
approximation of the underlying domain. Hence, the algorithm
may not be able to handle noisy inputs or unclean input
meshes.

6 CONCLUSION

We presented VoroCrust, the first algorithm for conforming
Voronoi meshing that can robustly handle a large class of
domains containing having both curved boundaries and arbi-
trarily sharp features. The core of the algorithm is a robust
refinement procedure to estimate a suitable sizing function
enabling the placement of Voronoi seeds to capture the bound-
ary while having the flexibility of decomposing the interior
using either structured or randomly generated samples. We
demonstrated the capabilities of the algorithm using a variety
of models and compared against state-of-the-art clipping-
based methods establishing the advantage of the proposed
VoroCrust algorithm.
For future work, we consider the generation of boundary

layers, which is very important in many applications. In the
same spirit, extending the algorithm to align the cells accord-
ing to a given anisotropy would be the natural next step. We
believe that the VoroCrust refinement can be extended to ac-
commodate additional requirements catering to the quality of
the cells while preserving the surface approximation. In partic-
ular, eliminating short Voronoi edges is a critical requirement
as it factors into the time step in numerical simulations.
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