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Digital electronics at the atomic limit (DEAL)
6-hrust 1: APAM-enabled Devices
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Thrust 2: APAM Modeling
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Thrust 4: Application Platform
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Thrust 3: CMOS Integration
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CMOS Integration is critical to furthering APAM
CMOS

+

APAM

■ CMOS is really good at many applications

■ APAM will accelerate specific tasks

■ Not seen as a full replacement

■ Augments CMOS to provide task specific advantages

■ Necessary to combine APAM and CMOS circuits to get maximum benefit
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State of the Art for CMOS Integration

Implant

Clean

immeposit W marker

High T Processes (>800°C)

APAM 800°C Process

CMOS Integration is not impossible
Progress is being made
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Thrust 3 Organizational Chart

  [ 

Program Leadership
PI: Shashank Misra
PM: Robert Koudelka
Deputy PM: Rick Muller

APAM-CMOS Integration
Lead: Dan Ward 

CMOS Integration: Dan Ward
Reduced Temp. Processing: Shashank Misra

Heterogeneous Integration: Steve Carr

Capabilities
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Financial: Laurel Taylor
Logistics: Lori Mann

Web: Dorean Chaleunphonh
Administrative: Felicia Pena

Support Team

Measurement: Lisa Tracy, Tzu-Ming Lu, David Scrymgeour, Ping Lu, Albert Grine J
EL Microfabrication: Dan Ward, DeAnna Campbell, Mark Gunter, Steve Carr, Sean Smith .....1.

Modeling: Denis Mamaluy, Suzey Gao, Leon Maurer, Andrew Baczewski, Peter Schultz, Quinn Campbell

ElimSurface Science: Shashank Misra, Plzra Bussmann, George Wang, Aaron Katzenmeyer,
Evan Anderson, Bob Butera, Dave Wheeler
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Thrust 3 Interactions

APAM devices

APAM Modeling

Acceptor
Doping
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Operation Gating
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Device & material
characterization

APAM Nanr evices
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&PAM Circuits
' 

Accelerated testing

Integration Direct Integration

Accelerated testing

Application Photolithography

CMOS —APAM
interaction

Heterogeneous Reduced Temp.
Integration Process

Complementary
Resists & Dopants

New dopants

Patternable Wet
Chemistries
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Thrust 3: Resources

Application, 18%

Majority of funding split
between fabrication and
measurement

Management,
10%

APAM Devices
32%

APAM Modeling,
14%
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Quick Terminology Review

lead-free
solder bump

•Silicon (Si) On-SI p-Si
•Polysilicon (Poly-Si)
D Undoped silicon glass (USG, SIO).
@Silicon dioxide (TEOS odde, SIO),
•Cobalt disilicide (CoSi)
05pin-on dielectric (SOD)
•Phosphor-silicate glass (PSG)
MiUngsten (W)
•Copper (Cu)
•Silicon nitride (SiN)
['Silicon nitride (SIN)
D Silicon carbide (SIC)

I

seal layer (nitride or oxide)

PSG  "SiN seal layer
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Quick Terminology Review

o
UJ
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lead-free
solder bump

•Silicon (Si) On-SI p-Si
•Polysilicon (Poly-Si)
D Undoped silicon glass (USG, SIO).
@Silicon dioxide (TEOS odde, SIO),
•Cobalt disilicide (CoSi)
05pin-on dielectric (SOD)
•Phosphor-silicate glass (PSG)
MiUngsten (W)
•Copper (Cu)
•Silicon nitride (SiN)
❑Silicon nitride (SIN)
Elsilicon carbide (SIC)

seal layer (nitride or oxide)

PSG  "SiN seal layer

Cu 5 SOD

Cu 4 Cu 4

"Ta/TaN barruer layer \ SiC etch stop layer

Cu 3

SiC etch stop layer --.......,

Cu 2 Cu 2

--.'
SOD PE:ITOS

7

c / SIC seal layer SOD

PSG
poly-Slua SiN be

lays
 AL7 tungsten

INW-1.
si

USG II USG
n-well

STI 
spacer

bu ed 5102

  P-Siecon wafer CMOS throuah FEOL

No metal present other than
tungsten plugs
Thermal budget >800°C
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Quick Terminology Review
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lead-free
solder bump

•Silicon (Si) On-SI p-Si
•Polysilicon (Poly-Si)
D Undoped silicon glass (USG, SIO).
@Silicon dioxide (TEOS odde, SIO),
•Cobalt disilicide (CoSi)
05pin-on dielectric (SOD)
•Phosphor-silicate glass (PSG)
MiUngsten (W)
•Copper (Cu)
•Silicon nitride (SiN)
['Silicon nitride (SIN)
D Silicon carbide (SIC)

I

seal layer (nitride or oxide)

PSG  "SiN seal layer

Cu 5 SOD

- Cu 4 Cu 4

4,,,TaiTaN barrIer layer \ SiC etch stop layer

Cu 3

SiC etch stop layer s.......,

Cu 2 u 2C

--.'
SOD PE:ITOS

7

c / SIC seal layer SOD

PSG
poly-Slua SiN be
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7 tungsten

USG USG sr, 
spacer
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bu ed SIO2

  P-Skon wafer

CMOS through BEOL
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All metal layers completed
Thermal budget limited to <450°C

CMOS throuah FEOL

No metal present other than
tungsten plugs
Thermal budget >800°C
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Quick Terminology Review

0
u

Cu 4

(15

vTafraN barrier layer

•Silicon (Si) Eln-Si p-si
•IPolysilicon (Poly-S1)
Dundoped silicon glass (USG, Sl0).
@Silicon dioxide (TEOS odde, S10),
•Cobalt disilicide (Cosi)
•Spin-on dielectric (SOD)
•Phosphor-silicate glass (PSG)
MiUngsten (W)
•Copper (Cu)
•Silicon nitride (SiN)
['Silicon nitride (SIN)
D Silicon carbide (SiC)

C I II

seal layer (niiride or oxide)

ie.SIN seal layer

Device completed, die-to-die or
wafer-to-wafer bonding allowed
Thermal budget limited to <450°C
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APAM Die (Inverted)

- - Bump bonds

CMOS Die

All metal layers completed
Thermal budget limited to <450°C

1
CMOS throuah FEOL

No metal present other than
tungsten plugs
Thermal budget >800°C
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How do we interface APAM devices with CMOS?

Direct CMOS-APAM integration
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Heterogeneous integration

APAM Die (Inverted)

HMI Bump bonds

CMOS Die
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Parallel Integration Paths Tested With Common Approach

Leverage SNL device libraries
and design capabilities

r Direct CMOS-APAM integration

7

APAM occurs between FEOL and
BEOL

MI mi

CMOS / APAM Die
Design

Reduced temperature processingl

_..,L APAM occurs after BEOL
How do APAM devices perform?
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Common set of diagnostic
devices used to assess all
paths (Hall, CV, etc.)

Heterogeneous integration
il

APAM occurs in custom flow

_a

i

IP-
I

How do CMOS devices perform?
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Direct CMOS-APAM Integration Advantages
r

Direct CMOS-APAM integration
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Advantages:
• Maximum integration with CMOS part
• APAM devices anywhere
• Best APAM quality/performance

Challenges:
• Potential fabrication process conflicts
• No single "CMOS" process flow
• Foundry accommodation of APAM process

impact:
• Highest impact of all paths 4 Best APAM quality
• Path to a CMOS module
• Platform for photolithography and wet chemistry integration (Thrust 4)
• Opens a potential application space 4 Supply chain assurance

Sandia
National
Laboratories
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Reduced Temperature Processing

Advantages:
• No CMOS foundry accommodation

of APAM process/tools
• No need to modify CMOS

processes

Challenges:
• Backside fabrication for APAM
• Lower temperature APAM

• Lower resolution
• Lower quality materials

impact:
• Path to post CMOS-fabrication

addition of APAM devices without
foundry support

• Open a potential application space
4 Supply chain assurance

Sandia
National
Laboratories
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Heterogeneous Integration

Advantages:
• Quickest path to CMOS-APAM integration
• Does not alter CMOS process flow

Challenges:
• Chip-chip or wafer-wafer bonding required

impact:
• APAM accelerated chiplets to enhance CMOS performance

Sandia
National
Laboratories

Heterogeneous integration

APAM Die (Inverted)

Bump bonds

CMOS Die
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Multiple paths spread out risks

• Direct CMOS-APAM Integration

a) Incompatible thermal budgets for CMOS and APAM

b) Incompatible process flows

• Reduced Temperature Processing

c) Unable to sufficiently reduce APAM processing

temperatures

d) Backside thinning results in APAM incompatible surfaces

• Heterogeneous Integration

e) Advanced heterogeneous integration techniques are

incompatible with APAM processing

Sandia
National
Laboratories
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a, b

Low

Medium

High

Impact
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Year 1 Objectives

F
Direct CMOS-APAM Integration

• Design STM compatible CMOS diagnostic chip

• Evaluate thermal budget of CMOS chip ex-situ

• Evaluate thermal budget of CMOS chip in-situ

• Reduced temperature processing

• Evaluate room temperature hydrogen termination

• Develop lower temperature surface cleans

• Demonstrate APAM recipes on thinned silicon

Heterogenous integration. System-in-package demonstration

• Plan bump bonding scheme

Sandia
National
Laboratories
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Year 1 Objectives

■ Direct CMOS-APAM Integration

■ Design STM compatible CMOS diagnostic chip

■ Evaluate thermal budget of CMOS chip ex-situ

■ Evaluate thermal budget of CMOS chip in-situ

■ Reduced temperature processing

■ Evaluate room temperature hydrogen termination

■ Develop lower temperature surface cleans

■ Demonstrate APAM recipes on thinned silicon

■ Heterogenous integration

■ System-in-package demonstration

■ Plan bump bonding scheme
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Do process flows exist where APAM can directly
integrated into CMOS flow?

Current APAM Devices

CMOS FEOL Transistor
\ /

runr
/AI

N-type Si P-type Si APAM
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Do process flows exist where APAM can directly
integrated into CMOS flow?

Current APAM Devices

CMOS FEOL Transistor
\ /

runr
/AI

N-type Si P-type Si

CMOS/APAM Device

Subject FEOL CMOS to APAM
process flow
1. Cleans
2. H-termination
3. Donor doping
4. Donor incorporation
5. Si capping

APAM

Sandia
National
Laboratories
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Do process flows exist where APAM can directly
integrated into CMOS flow?

Current APAM Devices

CMOS FEOL Transistor
\ /

runr
/AI

N-type Si

•

P-type Si

CMOS/APAM Device

Subject FEOL CMOS to APAM
process flow
1. Cleans
2. H-termination
3. Donor doping
4. Donor incorporation
5. Si capping

APAM
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CMOS/APAM device after BEOL

Big Questions:
• Are CMOS transistors still functional?
• Performance of APAM devices

22



Integrated APAM/CMOS demonstration goals

APAM control circuit Standard CMOS transistors

in

Control CMOS transistor gate with APAM wire

Sandia
National
Laboratories
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Year 1 Objectives

■ Direct CMOS-APAM Integration

■ Design STM compatible CMOS diagnostic chip

■ Evaluate thermal budget of CMOS chip ex-situ

■ Evaluate thermal budget of CMOS chip in-situ

■ Reduced temperature processing

■ Evaluate room temperature hydrogen termination

■ Develop lower temperature surface cleans

■ Demonstrate APAM recipes on thinned silicon

■

.

.

Sandia
National
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Are there processes that allow APAM device
fabrication after CMOS processing?

CMOS/APAM Device CMOS/APAM Device

I I I

!-!

Two Critical Challenges:
Metal routing layers prevent access to doped silicon wells
Metal routing has limited thermal budget (<450°C)

Sandia
National
Laboratories
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Lower temperature processing required for

post-CMOS APAM integration
■ APAM surface preparations require

temperatures >800°C

■ CMOS metal has max temperature of 450°C

■ Completed CMOS devices have thermal

budgets as low as 200°C

■ Need to develop recipes for all APAM steps

that run <200°C

■ Reduced temperatures affect chemistry of

APAM

■ Loss of atomic resolution

■ Reduction in dopant density

What is the performance cost of
reduced temperature processing?

Sandia
National
Laboratories
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Backside processing required for post-CMOS
integration
Direct Integration CMOS/APAM

r--
I

i

N-type Si

P-type Si

APAM

Sandia
National
Laboratories

27



Backside processing required for post-CMOS
integration
Direct Integration CMOS/APAM Inverted CMOS/APAM

1

•

N-type Si

P-type Si

APAM

/ \

Current APAM Device
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Backside processing required for post-CMOS
integration
Direct Integration CMOS/APAM Inverted CMOS/APAM

rom
1

•

N-type Si

P-type Si

APAM

E> / \

Current APAM Device

Altered wells
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Backside processing required for post-CMOS
integration

Silicon handle is very thick (>500 pm)

M =

/ \

1
/ \
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Need to thin backside to enable APAM fabrication

ir

/ 1

Can the backside be atomically cleaned after thinning?

/ \
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Year 1 Objectives

• Direct CMOS-APAM Integration
• Design STM compatible CMOS diagnostic chip

• Evaluate thermal budget of CMOS chip ex-situ

• Evaluate thermal budget of CMOS chip in-situ

Reduced temperature processing

• Evaluate room temperature hydrogen termination

• Develop lower temperature surface cleans

• Demonstrate APAM recipes on thinned silicon

Heterogenous integration. System-in-package demonstration

• Plan bump bonding scheme

Sandia
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Can APAM be integrated with heterogeneous
integration schemes?

Separate ICs

Packaged
CMOS Die Packaged

APAM Die

in Circuit Board

•

Bump bonding

APAM Die

Chiplets

APAM Die

CMOS Die CMOS Die

Increasing Difficulti
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Through wafer
via bonding

'1111111'11

Heterogeneous Integration (Hl) separates high end CMOS processing from APAM processing
Enables Non-CMOS custom fabrication process for APAM
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Paths to heterogenous integration
■ Demonstrate IC integration

■ Drive CMOS transistor gate with APAM wire

■ Minesweeper for more advanced integration issues

Packaged
CMOS Die Packaged

APAM Die

Circuit Board

■ Develop path for bump bonding APAM chips to

CMOS die

■ Understand process flow

■ Build CMOS base die

■ Drive CMOS transistor gate with APAM wire

Sandia
National
Laboratories

APAM Die with custom fab flow

CMOS Die

Heterogenous integration buys down risk
on CMOS integration
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CMOS Integration Summary

• Big picture

• Demonstrate APAM process

integration with CMOS co

• Provide guidance for best 2

paths for APAM integration in

future

• Impact post GC

• Deliver APAM enhanced

functionality for CMOS devices

through a variety of possible

flows most compatible with

target technology
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CMOS BEOL
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Invert chip
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Thin Backside
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