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APAM Path to Beyond Moore Computing (BMC) () &=,

Traditional BMC paths start from large to small by shrinking device sizes

APAM path to BMC starts from the atomic limit to devices to circuits

APAM Reconfigurable transistor (RT)

Control Gate

Programming Gate

The APAM approach opens many new opportunities, but also comes with challenges:
= What type of nanodevices to use for APAM-enabled reconfigurable logic?
= What are the rules of design for reconfigurable circuits?

Modeling and simulation (M&S) will help us answering these important questions !
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What type of nanodevices to use for APAM-enabled e,

reconfigurable logic?
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This project is not proposing a
specific device to optimize.
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* Design devices
based on APAM
toolbox

 Discover new
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What are the rules of design for reconfigurable e,
circuits?

Proposal

Reconf. FET Pathfinding:

Cost: 7 devices, 3 inputs
Benefit: 8 logic funcs.

- Efficient way to
implement logic

* Discover new
circuit-level
concepts

This project is not proposing a Gaillardon, IEEE VLSI (2015)
specific circuit to make.




What Modeling and Simulation (M&S) Brings (7)o

Not just help to interpret the data, but more importantly guide the experiments !

= MA&S are vital to
= understand new device physics
= improve device designs
= establish physical limits of different technologies

= Map the space of possibilities

= Study unmeasurable characteristics

= Assess system-level performance via multiscale M&S )
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Modeling Thrust: Resources e
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18% Leverages:

* Investments into beyond-CMOS device
simulation tools and TCADs
« SNL’s excellent HPC resources
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Integral parts of APAM Modeling Thrust =

1. APAM device simulation + "
* Necessary to understand device physics |

* Propose and improve device designs
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What do we need in an APAM Device Simulator? ) ..

« The APAM Device Simulator should
* be based on a Quantum Transport formalism
» be sufficiently fast to be able to treat realistic APAM-enabled structures and devices
« accurately describe APAM-materials system
* Include relevant physics: scattering effects, impurities, interface roughness, discrete dopants

« correctly describe bipolar transport (both carriers make significant contributions to the current)

No existing quantum transport simulator is capable of all of the above.
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Device Simulator: Quantum Transport

= Transistors have become so small that charge
transport can no longer be described by the
laws of classical physics:

* Principally new physical effects arise (tunneling,
quantum confinement, quantum capacitance)

« Semi-classical (drift-diffusion or particle-MC
based) methods do not provide the adequate
description at atomic scale

Simulation of Lg=6nm FinFET:

simulator for multi-terminal nanodevices in a prior quantum effects dominate/determine
project at Sandia device characteristics

We have created an electron quantum transport

D. Mamaluy, X. Gao, APL 106, 193503 (2015).
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Challenges for creating APAM Device Simulator @) &=,

The Big Numerical Challenge of quantum transport

A large dense matrix inversion is O(N3), N~10°-10° atomic sites

Quantum transport simulation is at the edge of the (im)possible.

= We have developed a method that scales linearly
= Numerics is still very challenging...
but now we can use reqular workstations

Gives more flexibility for device design and speeds up optimization
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Risk assessment: milestones for creating APAM @iz
Device Simulator

Goal: create a predictive Simulator for designing APAM-enabled reconfigurable devices

A. Quantum B. ~ Bipolar

Transport for tun
electrons ransport (Y3) 4

Year 1: Year 2: Year 3:
creation (done) creation creation
calibration calibration calibration
validation

Surface gate
G




Bipolar Quantum Transport for APAM Devices () o

Simulation of APAM bipolar devices requires bipolar quantum transport
The biggest challenge for bipolar quantum transport is

 Electron-hole (e-h) recombination in the quantum regime

* E-h recombination can significantly alter device
characteristics, well modeled in classical transport

* Little work exists to properly treat e-h recombinationin
the quantum transport regime

 Need to develop a new and efficient approach based on
either the master equation or the Buttiker probe method




Integral parts of APAM Modeling Thrust =

1. APAM device simulation + "
* Necessary to understand device physics |

* Propose and improve device designs
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Modeling reconfigurable circuits —— .

= Reconfigurable transistors are relatively new circuit

elements Vog=2V
: : i Y
= Usable in both reconfigurable-only and A |:£s
reconfigurable+complimentary circuits &
A
= Requires new circuit designs and design rules tellly
= Need a freely available modeling tool for others to b ol
explore both kinds of circuits -
Reconfigurable —

= Will use Xyce, a Sandia-developed, open-source, Logic
SPICE-compatible, high-performance analog circui

simulator

+ Complementary
Logic

™
ymmn ELECTROMIC SIMULATOR

G. V. Resta, Y. Balaji, D. Lin, I. P. Radu, F. Catthoor, P.-E Gaillardon, and G. De Micheli, ACS Nano 12, 7039 (2018). 17




Circuit simulation with APAM devices () ==,

Vpo=2V
1 v
= Circuit simulation requires a compact model s |‘£i
= Replicates external behavior of device (current-voltage relations) Circuit adl A
= Simpler and faster than full APAM device simulator by
: : B
= Two approaches, both informed by results from APAM device vy
simulator and experiment
C e . . . . Compact Mod
= Simplified physics with phenomenological adjustments + Xyce

= Lookup table of results from device simulator or experiment

= Can work backwards from a desired circuit characteristictoa Device f”:
device design

Device
Simulator

Design




Risk Assessment: circuit modeling

= A:Implement existing, non-APAM reconfigurable transistor
compact model in Xyce

= Allows immediate exploration of reconfigurable circuits

= |mplement APAM reconfigurable transistor compact model
in Xyce. Two options:

= B: Simple lookup table is not flexible enough

= C: Flexible physics-based compact model is too complex

Sandia
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Probability

Impact




APAM Path to Beyond Moore Computing (BMC) Notorst_

Reconfigurable transistor (RT)

Control

The APAM approach opens many new opportunities, but also comes with challenges:
= What type of nanodevices to use for APAM-enabled reconfigurable logic?
= What are the rules of design for reconfigurable circuits?
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End of CMOS scaling and paths to Beyond Moore Computing () =
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End of CMOS scaling and paths to Beyond Moore Computing @m:;m
APAM

= Single electronics
= Spintronics
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