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Digital electronics at the atomic limit (DEAL)
6-hrust 1: APAM-enabled Devices
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APAM Path to Beyond Moore Computing (BMC)

Traditional BMC paths start from large to small by shrinking device sizes

APAM path to BMC starts from th( atomic limit to devices to circuits
APAM Reconfigurable transistor (RT)
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The APAM approach opens many new opportunities, but also comes with challenges:

• What type of nanodevices to use for APAM-enabled reconfigurable logic?

• What are the rules of design for reconfigurable circuits?

Modeling and simulation (M&S) will help us answering these important questions !
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What type of nanodevices to use for APAM-enabled
reconfigurable logic?
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• Design devices
based on APAM
toolbox

• Discover new
device concepts
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What are the rules of design for reconfigurable
circuits?
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What Modeling and Simulation (M&S) Brings
Sandia
National
Laboratories

Not just help to interpret the data, but more importantly guide the experiments !

• M&S are vital to

• understand new device physics

• improve device designs

• establish physical limits of different technologies

• Map the space of possibilities

• Study unmeasurable characteristics

• Assess system-level performance via multiscale M&S

LMaterials Devices Circuits NAArchitecture

D,
project System-level performance
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Modeling thrust interactions

APAM devices
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Modeling Thrust: Resources
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Leverages:
• Investments into beyond-CMOS device

simulation tools and TCADs
• SNL's excellent HPC resources
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Modeling thrust organizational chart

Program Leadership
PI: Shashank Misra
PM: Robert Koudelka
Deputy PM: Rick Muller

Thrusts

[ #2 APAM modeling
Lead: Denis Mamaluy 

Nanodevices: Suzey Gao
Circuits: Leon Maurer 1

Cross-cutting capabilities

Sandia
National
Laboratories

Support Team
Financial: Laurel Taylor
Logistics: Lori Mann

Web: Dorean Chaleunphonh
Administrative: Felicia Pena

Mal= Measurement: Lisa Tracy, Tzu-Ming Lu, David Scrymgeour, Ping Lu, Albert Grine

Microfabrication: Dan Ward, DeAnna Campbell, Mark Gunter, Steve Carr, Sean Smith AIM

Modeling: Denis Mamaluy, Suzey Gao, Leon Maurer, Andrew Baczewski, Peter Schultz, Quinn Campbell

Surface science: Shashank Misra, Ezra Bussmann, George Wang, Aaron Katzenmeyer, Evan Anderson, Fabian
Pena, Esther Frederick, Bob Butera, Dave Wheeler
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Integral parts of APAM Modeling Thrust

1. APAM device simulation

• Necessary to understand device physics

• Propose and improve device designs

2. APAM circuit modeling

• Necessary for logic design

• Can assess system-level performance
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What do we need in an APAM Device Simulator?
Sandia
National
Laboratories

• The APAM Device Simulator should

• be based on a Quantum Transport formalism

• be sufficiently fast to be able to treat realistic APAM-enabled structures and devices

• accurately describe APAM-materials system

include relevant physics: scattering effects, impurities, interface roughness, discrete dopants

• correctly describe bipolar transport (both carriers make significant contributions to the current)

No existing quantum transport simulator is capable of all of the above.
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Device Simulator: Quantum Transport

■ Transistors have become so small that charge
transport can no longer be described by the
laws of classical physics:

• Principally new physical effects arise (tunneling,
quantum confinement, quantum capacitance)

• Semi-classical (drift-diffusion or particle-MC
based) methods do not provide the adequate
description at atomic scale

We have created an electron quantum transport
simulator for multi-terminal nanodevices in a prior
project at Sandia

Sandia
National
Laboratories

Simulation of Lg=6nm FinFET:
quantum effects dominate/determine
device characteristics

D. Mamaluy, X. Gao, APL 106, 193503 (2015).
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Challenges for creating APAM Device Simulator

The Big Numerical Challenge of quantum transport

A large dense matrix inversion is O(N3), N-105-106 atomic sites

Quantum transport simulation is at the edge of the (im)possible.

We have developed a method that scales linearly
Numerics is still very challenging...
but now we can use regular workstations

Gives more flexibility for device design and speeds up optimization

Sandia
National
Laboratories
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Risk assessment: milestones for creating APAM

Device Simulator

Sandia
National
Laboratories

Goal: create a predictive Simulator for designing APAM-enabled reconfigurable devices
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Bipolar Quantum Transport for APAM Devices
Sandia
National
Laboratories

Simulation of APAM bipolar devices requires bipolar quantum transport

The biggest challenge for bipolar quantum transport is

❑ Electron-hole (e-h) recombination in the quantum regime

• E-h recombination can significantly alter device
characteristics, well modeled in classical transport

• Little work exists to properly treat e-h recombination in
the quantum transport regime

• Need to develop a new and efficient approach based on
either the master equation or the Büttiker probe method

15



Integral parts of APAM Modeling Thrust

1. APAM device simulation

• Necessary to understand device physics

• Propose and improve device designs

2. APAM circuit modeling

• Necessary for logic design

• Can assess system-level performance
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Modeling reconfigurable circuits

• Reconfigurable transistors are relatively new circuit
elements

• Usable in both reconfigurable-only and
reconfigurable+complimentary circuits

• Requires new circuit designs and design rules

• Need a freely available modeling tool for others to
explore both kinds of circuits

• Will use Xyce, a Sandia-developed, open-source,
SPICE-compatible, high-performance analog circuit
simulator
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G. V. Resta, Y. Balaji, D. Lin, I. P. Radu, F. Catthoor, P.-E Gaillardon, and G. De Micheli, ACS Nano 12, 7039 (2018).
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Circuit simulation with APAM devices

• Circuit simulation requires a compact model

• Replicates external behavior of device (current-voltage relations)

• Simpler and faster than full APAM device simulator

• Two approaches, both informed by results from APAM device
simulator and experiment

• Simplified physics with phenomenological adjustments

• Lookup table of results from device simulator or experiment

• Can work backwards from a desired circuit characteristic to a
device design
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Risk Assessment: circuit modeling

• A: Implement existing, non-APAM reconfigurable transistor
compact model in Xyce

• Allows immediate exploration of reconfigurable circuits

• Implement APAM reconfigurable transistor compact model
in Xyce. Two options:

• B: Simple lookup table is not flexible enough

• C: Flexible physics-based compact model is too complex
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APAM

APAM Path to Beyond Moore Computing (BMC)

Reconfigurable transistor (RT)
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The APAM approach opens many new opportunities, but also comes with challenges:

• What type of nanodevices to use for APAM-enabled reconfigurable logic?

• What are the rules of design for reconfigurable circuits?
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Backup slides
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YEAR 2025: \
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The industry's dilemma: which technology will replace CMOS?
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*"The fundamental downscaling limit of field effect transistors", D. Mamaluy, X. Gao, APL 106, 193503 (2015).



End of CMOS scaling and paths to Beyond Moore Computing
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*-The fundamental downscaling limit of field effect transistors', D. Mamaluy. X. Gao, APL 106. 193503 (2015).


