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What if you could make devices atom-by-atom?

6r5 nm

10 nm

Evaluate new device
opportunities starting from
the physical limit of atoms

Top-down fabrication

5-7 nm

Atomic Limit

New path to scaling functionality / area
without shrinking transistor size
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Neuromorphic Computing
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What if you could do atomic-scale processing?
i- Re s i st

•

p Expose

ti°111111101

11 Develop

po5itive Tone Negative Tone

n Transfer n
process

Traditional etch process

I I
substratAl

Expose & develop

Obviate-
• Over-exposure of resist
• Resist stability after development
• Resist process stability Y

11111

New approach to processing
having different limitations

1 substrate

Transfer process
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Area selective chemistry
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Atomically precise advanced manufacturing (APAM)
"Chemical contrast" at Si surface
• Unterminated Si: 1 reactive bond/ atom
• H-terminated Si: unreactive

STM Tip

V V

Scanning tunneling microscope (STM) can
image and pattern the H-terminated surface

Junction
Bias
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Electronic devices at the limit of single atoms

PH3

2D areas of highly P doped Si to +/- 1 lattice site precision

PH3

F_77M•
Si(100)

H 7 H
1 I 
Si(100)
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Reconfigurable transistors reconfigure logic at run time

Conventional CMOS

Reconfigurable
transistors
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Gaillardon, IEEE VLSI (2015)

4 transistors

1 logic gate
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4 reg. transistors
Y 3 reconf. transistors

8 poss. logic gates
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Reconfigurable transistors (RTs) - impact
Commercial perspective

Increase functionality per
unit area, power

ARMCORTEX Cortex-A75 core
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Mission flexibility
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Atomic Limit

Opportunity to evaluate future impact of
reconfigurable transistor technologies
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Atomic processing - impact
Area selective chemistry

X

1
substrate

Expose & develop

Y

Y Y

I I

substrate

Transfer process
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63nm

70nm

Commercial perspective

R. Arghavani estimates

ION (mAil-trn
VGS=VDS=0. 7V AIONIION_FF

Si FinFET

(FIFIN=37nm)
0.630 0

1 NW GAA 0.286 -0.55

2 NW GAA 0.525 -0.17

3 NW GAA 0.576 -0.09

Si FinFET
0.690 +0.095

(HFIN=54nm)

Compare to APAM:
over 2 mA/
(cryogenic)

Unexpected material properties
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Limitations of APAM state of the art

1

Oxide

Silicon

2

Sample clean

x Clean sample: T > 800°C

3

Hydrogen termination

4

Hydrogen patterning

5

Phosphorus incorporation

x Patterning in UHV, with STM
x Only one proven resist & dopant

drain

6

7

source

i
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Silicon capping

Post processing

x Limit diffusion: T < 450°C
x Cryogenic operation only

Problems span surface chemistry, device physics, microelectronics
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Foundational capabilities
APAM SOA

Purely donor-based
devices

Operate at cryogenic
temperatures

Rudimentary quantum
transport

No clear way to
integrate with CMOS

No clear path to
manufacturability

FAIR DEAL

Include common
transistor elements

Room temperature
operation

Reconfigurable logic

Quantum transport

Combine APAM &
CMOS

Broaden range of resist
and dopant chemistry

Future Impact

Understand beyond
CMOS device concepts
at limit of atoms

Enhance CMOS with
APAM-enabled devices
and processes

New manufacturing
pathways — flexibility,
scalability

Sandia
National
Laboratories
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Digital electronics at the atomic limit (DEAL)
6-hrust 1: APAM-enabled Devices

Source

Control gate

N-type P-type

Programming gate

Drain

Thrust 2: APAM Modeling

Microelectronics

Drain

holes
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Thrust 4: Application Platform

-

light

Thrust 3: CMOS Integration

APAM



Answer high risk science questions

Acceptor
Doping

Room T
Ops.

APAM Nanodevices

E

Direct Integration

G

Photolithography

Surface
Gating

Heterogeneous
Integration

H

Alternative
Resists &
Dopants

Reliability

APAM Circuits

F

Reduced Temp.
Process

1

Patternable Wet
Chemistries

A

Low
J K L Medium

High risk derives from open science questions. 
= High

Goal: Reduce risk 4 move to engineering questions.
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Pathfinding approach

Thrust #1: APAM devices

Thrust #2: APAM Modeling

Thrust #3: Integration

Thrust #4: Application

Acceptor
Doping

Tasks

Room T
Operation

APAM Nanodevices

Direct Integration

Photolithography

Surface
Gating

Heterogeneous
Integration

Alternative
Resists & Dopants

Reliability

APAM Circuits

Reduced Temp.
Process

Patternable Wet
Chemistries
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Year 1: Try the obvious approach, evaluate alternative paths.
Year 2: Try alternative paths that remain in scope. Integrate things that work together.
Year 3: Consolidate to crosscutting goals that remain in scope.
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Thrust #1: APAM devices

CI
acceptors

Device cross-section

Li

Surface gate
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Acceptor chemistry Complementary transistors

Doping Room temperature operation

Surface gate Control, program device
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Drain

DEAL expands the APAM toolbox to discover new transistor technologies with atomic control
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Thrust #2: APAM modeling

APAM Reconfigurable transistor (RT)
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DEAL establishes modeling tools to design devices and circuits for reconfigurability
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Thrust #3: CMOS integration

APAM
CMOS FEOL

DEAL establishes proof-of-principle integration with CMOS:

• Enhance CMOS circuit with small number of APAM devices

• Add APAM processing into regular CMOS manufacturing

CMOS BEOL

Sandia
National
Laboratories
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Thrust #4: Application platform

Scalable H H
photolithography

Wet stamp with
molecular
precursor

--' PH3
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DEAL develops proof-of-principle scalable workflows built on atomic / molecular resists and dopants
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Organizational chart

Program Leadership
PI: Shashank Misra
PM: Robert Koudelka
Deputy PM: Rick Muller

Thrusts

#1 APAM-enabled devices
Lead: Shashank Misra 

#3 Integration
Lead: Dan Ward 

#2 APAM modeling
Lead: Denis Mamaluy

#4 Application platform
Lead: George Wang 

Cross-cutting capabilities
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National
Laboratories

Support Team
Financial: Laurel Taylor
Logistics: Lori Mann

Web: Dorean
Chaleunphonh

Administrative: Felicia
Pena

)

ml• Measurement: Lisa Tracy, Tzu-Ming Lu, David Scrymgeour, Ping Lu, Albert Grine
iii

li.. Microfabrication: Dan Ward, DeAnna Campbell, Mark Gunter, Steve Carr, Sean Smith ..1.11.111

Modeling: Denis Mamaluy, Suzey Gao, Leon Maurer, Andrew Baczewski, Peter Schultz, Quinn Campbell

Surface Science: Shashank Misra, Ezra Bussmann, George Wang, Aaron Katzenmeyer,
Evan Anderson, Bob Butera, Dave Wheeler
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Atomistic modeling toolkit

Need to pioneer a lot of 'new chemistry'

‘r*

g kr19 r ..(%

ID

Some of the steps involved in phosphorus
incorporation from a phosphine precursor

Accelerate pathfinding in thrusts 1 & 4

• Screening dopant chemistries
• Understanding atomic resists

• Exploring, rationalizing wet chemistry

Tools: density functional theory, quantum Monte Carlo, and kinetic Monte Carlo

Sandia
National
Laboratories

19



Accelerate workflows

Need to make many devices to answer science questions

Need faster cycles of learning for thrusts 1, 2, 3

Sandia
National
Laboratories

Task Existing
Throughput

Existing
shortcut

Future accelerators

STM 2 days !dab proxy Photolithography (4), sample prep (3,4)

!dab 6 per day Simulators CMOS integration (3)

Measurement 1 day Simulators New systems, packaging, RT operation (1)

Focus on removing rate-limiting steps & ̀device-i-fying' every advance.
• '17-18: Interdisciplinary advances speed up !dab
• '18-19: Communication: sample tracking database
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