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Outline

1. Introduction - Nanoparticle Self-Assembly
• Nanoparticle interactions
• Collective properties of nanoparticle arrays

 , • Current Progress

2. Pressure-lnduced Assembly and Formation of 1-3D Nanostructures
• High pressure induced assembly

a)

Diamond anvil cell (DAC)

Ambient pressure

3. Summary

• 1-3D metallic nanostructures (Au and Ag)
• Semiconductor nanowires (CdSe, etc.)
• Pressure-tuned nanoparticle coupling and collective

property
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Applications of Nanoparticles and Arrays

• Size/shape-dependent and collective optical, electrical, and magnetic

properties.
e.g., surface plasmon resonance (SPR), tuning refractive index for optical
coatings, tuning dielectric constant, QD/solar cells, electron
transport/conductance, magnetic memory, etc.

• Chemical and biological sensing, imaging, & therapeutics.
e.g., Surface enhanced Raman scattering (SERS) based chem-/bio-sensor
systems, MRI contrast agents, cell killing, etc.

• Catalyst arrays for orientated growth of nanomaterials and arrays.
e.g., carbon nanotube arrays/films, nanowire arrays, etc.

(CdSe) quantum dot size increases

millE.1..,

 11
 .

Sanderson, K., Nature
vol.459, 760-761, 2009.
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Synthesis of Nanoparticles at Ambient Pressure

(1) "Hot Soap" solution method 

Murray, C.B. et al., Annu. Rev. Mater. Sci. 30, 545-610, 2000.

Semiconductor and magnetic
nanoparticles:
e.g., CdSe, FePt, etc.

Organic ligands:
Trioctylphosphine
Trioctylphosphine oxide
CH3(CH2)nNH2
CH3(CH2)nCOOH

• 50 nrn.
_.•,

DiP.,  

(2) Phase transition synthesis of metal nanocrystals 

_I
CH3(CH2)nSH
(CH3(CH2)7)4N+Br
NaBH4

Gold & silver
nanoparticles

* Brust, M., et al., J. Chem. Soc.-Chem. Comm. 7, 801-802, 1994.

Yin, Y., et al., Nature, v.437, 664-670, 2005.
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Nanoparticle Assembly at Ambient Pressure:
Balanced Nanoparticle Interactions

Balanced Nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
•

Disordered with defects:
vacancy, grain boundary, etc.

Ordered array

Lennox, R.B. et al. Chem. Eur J. vol. 2, 359-363, 1996,
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Nanoparticle Self-Assembly at Ambient Pressure:
1. Balanced Nanoparticle

•
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2. Heterogeneous nucleation

a
Non-

solvent
layer

Buffer layer

CdSe
rianocrystals
in a solvent

Talapin, et al., Adv. Mater. 2001.

3. Solvent Evaporation
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Nanoparticle Self-Assembly at Ambient Pressure:
2. DNA-Programmable

•
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\liAbi4;.:W S-A10-AAGACGAATA1TTAACAA 3 
5'CGCG-A-TTGTTAAATATTCGTCTT 3'

3TI-CTGCTTATAAATI-GT1-A-GCGC 5'
Linker A

AACAATITATAAGCAGAA-A10-S5'
  Linker A

b

O

T> T,„ T<Tm

e5S-A -AAGACGAATATTTAACAA CGCG-A-TTGTTAAATATTCGTCTT 3'10-,
- TICTGCTIATAAATTarr-A-GCGC AACAATTTATAAGCAGAA-A -S5 et1 i I, i 1 ,0

Region 1 (18-mer) Region 2 Region 1 (18-mer)

ierS-A10-AAGACGAATATUAACAA TCCTIT-X-TFGTFAAATATI-CGTCTI-
3'TICTGCTIATAAATTG17-X-AAGGAAA 5 t 3AACAATT-IATAAGCAGAA-A10-S5 e

Linker X Linker Y

T > T,
il 

T< T,,

e5 S-A10-AAGACGAATATITAACAA 
TfCCTIT-X-TrGTrAAATATI-CGTCTI" 3'

3'TTCTGCTIATAAATTGT1-X-AAGGAAA AACAATTIATAAGCAGAA-A10-S5' e1 1 1 1
Region 1 (18-mer) Region 2 Region 1 (18-mer)

Y. Li, et al. JACS, 2015, 137, pp4320-4323; Jaswinder Sharma, et al., Science 323, 112-116, 2009; Sung Yong Park,
et al., Nature 451, 530-556, 2008; Dmytro Nykypanchk, et al., Nature 451, 549, 2008.
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Nanoparticle Self-Assembly at Ambient Pressure:
3. Dipole-Dipole Interactions and Chemical Reactions

Dipole-Dipole Interaction

Z. Y. Tang, et aL, Science 297, 237, 2002.

Chemical Reactions

0

NH2 -.411r,OH

0

lActinalion
' • ̀

1.
•-••

• • .

-

G. A. DeVries, et al., Science 315, 358, 2007.

OH 
i) 6-inercaptohexanoic o,_,-,--s-8
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Nanoparticle Interactions and Coupling

Nanoparticle coupling depends on interparticle separation distance

Organic ligands

pomp INP ur W. jgoi
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Balanced nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
•
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Tuning Plasmonic Response from Alkanethiolate-Stabilized Gold
Nanoparticle Superlattices
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Langmuir-Blodget to Tune Nanoparticle Separaion

LB process
pressure sensor

Teflon trough

El

H20 subphase

mobile barrier

Teflon troughn
Iwell for film deposition

• uniaxial pressure
• 2-dimensional
• limited pressure range

a

C. P. Collier, et al, Science, 227, 1978-1981, 1997.
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Directed Assembly- Nanoparticle Assembly under Pressure:
Mimic Manufacturing Processes - Embossing or lmprinting

Controlled pressure

Je Je
Embossing plate/mask

1 II 1 1 1 III
substrate

release

non
:•:•:•:•:•

Substrate

Features:
• Rapid
• Cost effective
• High throughput
• High fidelity
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Pressure-Induced Assembly and Fabrication

An external pressure overcomes balanced interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance, and to fabricate new nanoparticle architectures.
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Balanced Nanoparticle interactions:
•Attraction
•Van der Waals
•Charge interactions
•Dipole-dipole
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• Provide controlled pressure fields:
- Hydrostatic & uniaxial
- Controlled pressure range

• Allow in-situ structural and property characterizations
- Absorption, emission, etc.
- Crystal structure, phase transition, etc.
- Structural evolution with pressure
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Before Compression Starting Materials: Ordered
Spherical Gold Nanoparticle Arrays

a)

Balanced particle interactions

Diamond anvil cell (DAC)

Ambient pressure

5 nm gold nanoparticles and fcc lattice (a = 10.4 nm)

hkl de IA dt /A
111 59.7 N.0
200 51.5 52.0
220 36.2 36.8
311 31.2 31.4
222 29.8

0.5 1.0 1.5
2 Theta (degree)

30.0

2.0

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010. Sandia
National
Laboratories



After Compression Formation of 10 Nanowires

a

b

Diamond anvil cell (DAC)
Ambient pressure 13 GPa—Ambient pressure

c hkl de/A t /A 
10 70.6 70.5
11 42.1 40.7
20 35_4 35.3
12 26.8 26.6
30 23.5 23.5

0 5 1.0 1.5 2.0
2 Theta (degree)

f g

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
Sandia
National
Laboratories



Bundles of 1D Nanowire Arrays

a

c

100 nm

d

Uniform length

L
----'

Wu H., Fan H., et al. Angew. Chem. Int. Ed., 49, 8431-8434, 2010.
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Pressure Tuned 1D Nanostructures
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In-situ Synchrotron X-ray Studies of Nanoparticle
Assembly under Pressure

An external pressure overcomes specific interparticle interactions, enables

engineering of nanoparticle assembly, allowing fine-tuning of lattice structure and

interparticle separation distance, and to fabricate new nanoparticle architectures.

a)

7.7 GPa

Amb

0.5 1.0 1.5 2.0 2.5
2 Theta (degree)

Reversible

0-9 GPa

0 4 8 12

Pressure (GPa)

d111

d) 0.53

0.52

0.51-

0.50

 >

• _--- fcc
■

/6

Hex

0 4 8 12
Pressure (GPa)

R=d311/d111

Wu H. & Fan H. et al., J. Am. Chem. Soc., 132, 12826-12828, 2010
& Angew. Chem. lnt. Ed., 49, 8431-8434, 2010.
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Pressure-Induced Nanoparticle Assembly Processes
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Pressure-Induced Formation of 3D Nanostructures

Interconnected 3D gold networks are formed depending on initial nanoparticle packing

Reversible

0-9 GPa

A
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R-0

4.3.
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c, Ambientc\i,
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Wu H., Fan, H. et al., J. Am. Chem. Soc., 132, 12826, 2010 & J. Am. Chem. Soc. 136, pp 7634, 2014.
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Electron Microscopy of 3D Networks

SEM images

TEM image

Sandia
National
Laboratories Wu, H. et al. J. Am. Chem. Soc. 2014, 136, 7634-7636.



Before Compression Starting Materials: Ag Nanoparticles
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Wang, et al. J. Am. Chem. Soc. 133, 14484-14487 (2011).

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).
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Structural Evolution of Ag Nanoparticle Arrays during
Compression and Release

14.58 GPa

hex

c17.1 co
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Wang, et al. J. Am. Chem. Soc. 2011, 133, 14484-14487.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).
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Structural Evolution of Ag Nanoparticle Assemblies during
Compression and Release
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Li, W. et al., Nano Lett. 2014, 14, 4951-4958.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).



sawnoueN SV ai



Oriented Consolidation and Formation of Ag Nanowires
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Wang, et al. J. Am. Chem. Soc. 2011, 133, 14484-14487.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).
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Oriented Consolidation and Formation of Ag Nanowires

Ag nanoparticles connect together through (111) planes to (111) planes since (111) is the major
plane on surface of decahedron-shaped Ag nanoparticles.

(b)

5.5 nm Ag
decahedron

(c)

88 nm Au
decahedron

Song, H. et aL, J. Phys. Chem. C, 112, 2469-2475, 2008.

Wang, et al. J. Am. Chem. Soc. 2011, 133, 14484-14487.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).
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Stress-Induced Assembly and Consolidation
of Nanoparticle Superlattices
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Li, W. et al., Nano Lett. 2014, 14, 4951-4958

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).



Pressure-Tuned Nanoparticle Interactions and Coupling
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Structure - optical property correlation of Ag nanoparticle arrays
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Adv. Mater. 2016, 28, 1989-1993.

Li, B.; Fan H., et al., Nat.Commun. 5:4179 doi: 10.1038/ncomms5179 (2014).



Semiconductor Nanoparticles (CdSe) under Pressure

Previous studies were focused on structural transformation in atomic lattice of
CdSe nanoparticles and associated optical property changes under pressure.
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Semiconductor Nanoparticles (CdSe) under Pressure

Our studies were focused on structural transformation in CdSe nanoparticle
mesophase and fabrication of new nanostructures under pressure.
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Reversible
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1 D
Nanowires
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Li, B. et al. Nat. Commun. 8, 14778 doi: 10.1038/ncomms14778 (2017).



Structural Evolution of Ordered, Self-assembled CdSe
Nanoparticle Arrays under Pressure

5 nm CdSe nanoparticles coated with Octadecylphosphonic acid (ODPA), Trioctylphosphonic oxide (TOPO)

(a)

13.81GPa -

9.53GPa

7.08GPa

OGPa
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(b)

•
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After release
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fcc
a = 102.88 A

B. Li, K. Bian, et al, Science Advances 3, e1602916 (2017).



Tunable Interparticle Spacing in CdSe Arrays
during Compression and Release
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B. Li, K. Bien, et al, Science Advances 3, e1602916 (2017).



Atomic Lattice Phase Transition of CdSe Nanoparticles
during Compression and Release

111

200

O

220

10.5(
9.31
8.18
7.08

5.27
3.08

0 co 
1.62
U.

Amb

5 10

2e (degree)

Wurtzite Rock salt

Amb 6 GPa

15 20

Zinc blende

R-1 GPa R-Amb

Zinc blende
311 P (GPa)

220 R-Amb (cubic)

R-0.93

R-4.75
R-7.91
R-11.4P Rock salt
13.89

(cubic)

Wurtzite
(hexagonal)

B. Li, K. Bien, et al, Science Advances 3, e1602916 (2017).
Sandia
National
Laboratories



Transmission Electron Microscopy Image of CdSe Nanowires



Transmission Electron Microscopy Image of CdSe Nanowires

B. Li, K. Bian, et al,
Science Advances
3, e1602916 (2017).



Scanning Transmission Electron Microscopy Image of CdSe Nanowires

STEM image

TEM by Dr. Ping Lu
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Stress Induced CdSe Nanoparticles Interactions
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Pressure Induced Phase Transition on Multiple Scales
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Optical Property of CdSe Nanowires under Pressure
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Ultrafast assembly and synthesis of gold nanostructures
using nanosecond compression via pulsed power
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Ultrafast assembly and synthesis of gold nanostructures
using nanosecond compression via pulsed power
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Ultrafast assembly and synthesis of gold nanostructures
using nanosecond compression via pulsed power
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Summary: Pressure-Induced Nanoparticle Engineering

Pressure-Directed Assembly presents a paradigm shift in engineering nanoparticle arrays:

• Allow precise, systematic, and reversible tuning of interparticle distance for interrogation of new

chemical and physical properties.

• Produce new chemically and mechanically stable 1-3D nanostructures, which is not possible for

current top-down and bottom up methods.
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