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Giant impacts explore exotic P,T states
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Planetary interior models unconstrained
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Low pressure phase diagram
Sandia
National
Laboratories
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Hugoniot state interpretation
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• Multi-component system

• Incommensurate melting

• Melting 120-160 GPa

• No XRD, indirect phase ID
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Planetary science on the Z Machine
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Basic idea: Solve F = ma for the ions, with the force due to electrons computed
self-consistently from solution of the Kohn-Sham hamiltonian:

(il2V2 +V(rt(r) f dr'  19(r) 6Exc[1)
p(r) 

0,(r) = ev(bi(r)

Thermodynamic quantities such as E, P, T, V, directly accessible

without making any assumptions about the response or properties of

the material a priori.
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• Data span 13< Us <24 km/s

• Resolve curvature in Hugoniot

• No discontinuities

• Agree with extrapolated MANEOS
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• Data span 13< Us <24 km/s

• Resolve curvature in Hugoniot

• No discontinuities

• Agree with extrapolated MANEOS
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• MANEOS thermal prop's off

• Z, OMEGA, and DFT-MD in
agreement
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• Data span 13< Us <24 km/s

• Resolve curvature in Hugoniot

• No discontinuities

• MANEOS thermal prop's off
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• Data span 13< Us <24 km/s

• Resolve curvature in Hugoniot

• No discontinuities

• MANEOS thermal prop's off

• Smaller than expected signal due to
de-mixing

Well... ls it de-mixed, or not? T
e
m
p
e
r
a
t
u
r
e
 (
k
K
)
 

18

16

14

12

10

8

6

4

• Z Data

• O QMD: Liquid Mg2SiO,

- 1— OMEGA

Bolls et al.

_ • Sekine et al.

—Temperature Fit

QMD: MgO.MgSiO,

—QMD: 2Mg0+SiO,

— M-ANEOS, dunite

.............

Mg0 B1 Solid

Mg0 Liquid

Mg0 B2 Solid

200 250 300 350

Pressure (GPa)

400

email: jptowns@sandia.gov 9



Potential for phase separation
Sandia
National
Laboratories

Two things to consider:

• Incommensurate melting at high
10"

pressure? 1012

• Experiments probing equil. states?
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New results on low pressure Hugoniot
Sandia
National
Laboratories

• Persistence of Fo to 10's GPa?

• MP and HPP difficult to reproduce

• New XRD experiments suggest
metastable 01 to 75 GPa(!)
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New results on low pressure Hugoniot
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• Persistence of Fo to 10's GPa?
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• Hugoniot states in liquid well constrained

• Possible kinetic effects persist at least up to melting

• Entropy, melting, and release states in progress

Questions?
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EXTRAS
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New observations constrain structure
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The Rankine Hugoniot relations
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How to estimate the Hugoniot
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How to estimate the Hugoniot
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Density Functional Theory in 2 minutes

"Nature"
Fully interacting system

VEXT

E = fIT drl . . . dr N

Adapted from Mattsson et al. 2005
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"Nature"
Fully interacting system
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Density Functional Theory in 2 minutes
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"Nature"
Fully interacting system
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