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Nanophotonics Activity
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Integrated Photonics, Nanoscale lasing, Emission control, Solid State lighting, Energy conversion,

Non-classical light sources, Subwavelength light control, Detection, Sensing , Nanocircuitry
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Nanophotonics Activity
Metal optics and Metamaterials

Non-resonant Broadband Ultra-subwavelength Light confinement

Double groove Metal Nanostructure a
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>. Broadband transmission and electric field enhancement
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Metal dielectric composite for Epsilon-near- zero in the visible
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G. Subramania, A. J. Fischer, T. S. Luk, Appl. Phys. Lett. , 101, 241107(2012)
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Photonic Crystals: Nanostructured Electromagnetic

Environment
1 D 2-D 3-D

n
1 n

2

vanwrarit

Control of light propagation 

• Guiding, bending and splitting
• Negative refraction
• Self-collimation
• Localization
• Slow light
• Cloaking
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Control of light emission 

• Spontanteous emission enhancement

• Strong-coupling (Photon — Atom Bound states, Non-

Markovian emission process)

• Non-classical light sources

Reference: "Photonic crystals: Molding the flow of light", J.D

Meade, J. Winn, Princeton Univ.Press, NJ(1995)
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Examples of 3D Photonic Crystals
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(Fermi's Golden Rule)
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Photonic Band Structure logpile

r
Wavevector
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Multilevel E-beam Fabrication-Tour-de-force approachaFates

PC fabricated one layer at a time.

1.Fabricate first level

MANAMANAMAN

2. Fill and planarize

r V V VII

WWMM

3. Make next level

4. Repeat process to make
additional levels

Alignment
• Lattice constants < 400nm

• Alignment precision to within 10% of

lattice constant needed

• High quality Au registration marks

➢ Alignment
➢ Planarization

Alignment Mark

Electron gun

ff

7L 7L

Electron beam

Device

Excellent alignment was obtained
with both JEOL-JBX5E and 9300FS



TiO2 Logpile PC Fabrication Procedure
Single Layer Fabrication

1. Deposit Si02

2. E-beam Write

v

3. Reactive-ion Et h

5. Post lift-off

Sandia
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4. E-beam evaporation
of TiO2

TiO2

illam



Ti02 Logpile- Visible 3D PC

Normal direction stop gap
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Experiment
-Simulation
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Wavelength(nm)

G. Subramania, Y.-J. Lee, A. J. Fischer, and D. D. Koleske, Advanced Materials 22, 487-491 (2010)



Emission Modification in Ti02 Logpile
Dielctric band vs. air band emission control

• Effect of 'air band' modes have not been probed

• Advantages
➢ Post introduction of light source
➢ Choice of light source (QDs or dyes or gas)
➢ Potentially higher density of states

enhancement
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Requirements for Accessing the 'Air' Void Region of Walk

>Key Challenge: Locating the QDs in the void region without affecting the photonic
bandgap

>Physical access to the 'air' region with ability to attach QDs

> Low refractive index: minimal disturbance to photonic bandgap

Room temperature Spin Coatable Aerogel

Age and
cap gel

Disperse by
sonication

Brinker group (S. S. Prakash et al.,
Nature 374, 439 (1995) )

Spin coat

Logpile PC

Introduce QDs through chemical attachment (3-
mercaptopropyltrimethoxysilane chemistry )

Developed by
Alex Lee

G. Subramania, Y. J. Lee, A. J. Fischer, T. S. Luk, C. J. Brinker, D. Dunphy, Appl. Phys. Lett. ,

95, 151101(2009)

dry at RT

aerogel
Logpile PC



Effect of Aerogel and CdSe QD infiltration
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Aerogel and CdSe QD infiltration has negligible effect
on the bandgap!
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Laser

Substrate

<:*

0 '7'
560 580 600 620 640 660 680 700

Wavelength(nm)
G. Subramania, Y. J. Lee, A. J. Fischer, T. S. Luk, C. J.

Lett. , 95, 151101(2009)

Spontaneous Emission Modification

Objective

PC
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CI Microphotoluminsecence with 532nm (5mW CW pump)

CI Equivalent volume of unpattened CdSe infiltrated aerogel
as reference

Light emission suppression inside the bandgap and
enhancement at the band edge

CdSe Ref
a = 350nm
a = 400nm

a = 350nm
a = 400nm

640
Wavelength(nm)

Brinker, D. Dunphy, Appl. Phys.
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GaN 3D Photonic crystals
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Spontaneous Emission Control to Benefit SSL
1400.--1

3D photonic crystals

.1/47*71:

40, -O.
dik

V

MTN! 111410101119R,

SSLS
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• Full 3D gai., Na.• CA I 1 ....neve ultimate emission

control

• Sandia has strong capabilities in 3DPC and Nitrides

- Merge lnGaN LED research with 3D photonic

crystal research.

InGaN LED array ipcorporated into a 3DPC

3DPC

Improving lnGaN LED efficiency enhancements will benefit SSL — e.g. Green

emission.



All GaN Logpile Photonic Crystal

Epitaxial GaN grown though nanostructured template reduces
dislocation density

2/26/2008
3 10 25 PM

Top GaN layer

Bottom Epi-layer
WD I mag HV tilt

10.8 mm110000x 30.00 kV 45°
HFW

15.2 m
 5 m
Quanta FEG

2/26/2008 WD I mag
3:17:59 PM18 4 mm110 000 x 30 00 kV

 5 gm  
Quanta FEG

Qiming Li et. al., Appl. Phys. Lett. 94, 231105(2009).
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GaN growth through logpile template

1. Si/S102 logpile PC 2. After Si is removed

with KOH.

Sapphire

GaN

Si

S102

4"4:41.
...40.
, - ,..4*.

440.* '''' Z 4r#♦ AI' 
, 411.- , 414" 41. 0.

111- , 4Ih 111. -
-4 di', 41. , 4A ../.- ,.... 46"

..- A ''." -, .h
''.

5. GaN logpile PC after Si02

logpile template removal
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3. MOCVD GaN growth

through Si02 template

.4.%44%.**********6%. •

4. After complete GaN infiltration

into Si02 logpile template



With optimized growth conditions ...

Optimize Growth conditions

➢ Gas mixture:

TMGa, NH3 ( - 4 SLM), H2,

and N2 ( - 100 sccm)

➢ Temperature range:

1000C-1075C

➢ Pressure range:

7 torr-30 torr

Sandia
National
Laboratories

G. Subramania, Q. Li, Y.-J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, Nano Lett.

11, 4591 (2011).



Bottom-up epitaxial growth of crystalline GaN
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SiO
• 'V of
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GaN Template

G. Subramania et. al. , Nano Lett. 11, 4591 (2011).
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FDTD Simulation 
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3DPCs: Wavelength, Materials, kiagoriones
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GaN 2D Photonic crystals
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➢ Low lasing threshold

➢ Increase interaction of light with the
gain region

➢ Enabled by low group velocity
modes' in photonic crystal*

➢ Vertical Emission

➢ At higher bands there are low group
velocity modes near the Gamma
point

➢ Near the Gamma point the in-plane
wave vectors are small resulting in
near-normal emission

➢ Wavelength Tunability

➢ Achieved through lattice constant
and nanowire diameter variation

*Sakoda, K. Optical Properties of Photonic Crystals.

 K (Springer-Verlag, 2001).



Fabrication of III-N nanowire laser array
EBL pattern in PMMA Ni evaporation and lift-off

H,S0,--based Ni removal

E> 114

KOH based wet etch

C12 based dry etch

Wright, J. B. et al. Multi-Colour Nanowire Photonic Crystal Laser Pixels. Sci. Rep. 3, 2982,(2013)
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Optical response low threshold lasing

0 50 100 150 200 250

Pump Peak Power Density (kW/cm2)

2x108 Mülticalor Laser Array
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Wavelength (nm)
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-InGaN MQWs

- InGaN
Underlayer

• A low lasing threshold is achieved with < 500kW/cm2 for all PC lasers fabricated.

• Wavelength tunability (lattice constant and nanowire diameter ).

• Multiple color laser emission on a single epitaxial wafer covering a spectral range
from 380-440nm.

• Multiple gain regions can simultaneously lase
• Pathway for enhancing the available lasing spectral range

Wright, J. B. et al. Multi-Colour Nanowire Photonic Crystal Laser Pixels. Sci. Rep. 3, 2982,(2013)



Improving light extraction with Quasiaperiodic structures

Method 1: change shape of emitters Method 2: change position of emitters

• 4 '.111:Olf a
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Miyai, E., et al., Nature, 441, 946 (2006)
Noda Group

Present Work

*Possible to improve extraction without sacrificing emission enhancement

*Anderson et al., Opt. Lett. 40:2672 (2015)



Extraction optimization using Quasi-periodic array

F.O.M. =

i coo + A
J coo — A
f coo + A

i coo — A

d CO
1
E
-12Ap 

d CO
1
E
-12P

1 0
o

Optimized geometry:

Breaks mirror symmetry

Anderson et al., Opt. Lett. 40:2672 (2015)

20 40 60 80 1 00

1E12
max

0

Iteration



Photoluminescence response

Periodic

,

350

—Q. Aper.
—Per.

400 450)
Om)

500

Quasi Periodic

P. D. Anderson, D. D. Koleske, M. L. Povinelli, and G. Subramania, Opt. Mat. Exp7 (10), 3634 (2017).



Summary/Possibilities

3D

• Measure full 3D gap effect using emission behavior

• Emission life-time measurements - PDOS

• QDs in the bulk of the 3DPC

• Strong-coupling at band edge

• Electrically injected 3DPC (GaN)

2D

• Electrical injection

• Large area scaling

• Wavefront / angular momentum control

➢ Particle acceleration

Simakov, E. I. et al.. Phys. Rev. Lett. 116, 064801 (2016).

Sandia
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n-typecontact

E. C. Nelson, et al., Nat Mater

10, 676 (2011)
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Metal Nanostructure Photonics
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Epsilon Near Zero Material and What Can it Impa

Epsilon(8): Dielectric constant

6 ,11: -1+
Plasmonic

( > 50 yrs)
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Epsilon Near Zero (ENZ) material is a metamaterial with

Re µ unique and interesting properties.

c,m:
Dielectrics

(> 80yrs)

Metamaterial

10yrs

6

Re E

Magnetic plasma

Optical Nanocircuits
Vacuum light guiding, electrical

isolation at optical frequencies
d

ri
 I I l =I =I
14, - 14, Pek't , Re(e)‹ 0 Irn.

[Engheta, N., Science 317 1698(2007)]

• D=sE-0 fors-0
• V 4 oo; No phase variation
• DC behavior at optical frequencies

Properties

• Sub-wavelength squeezing of light (X/20)

• Lower loss, broadband at optical wavelengths ( non-
resonant, effective medium)

Light squeezing through sub-

wavelength channels

Subdiffraction Imaging

Far field subwavelength

magnification

Input Planc
A. Salandrino and N. Engheta, Phys. Rev.

B. 74, 075103(2006)
32



Effective Medium Approach to ENZ

eqffective

Goals

> Minimize losses due to metal

>. Effective medium behavior-finer subdivision

>. Reduce non-local effects — Smoother field distribution

>. Easy fabricate , easy characterization

dielectric

fe, + (1- f)e_

Materials Choice e_ : Ag and e+ : TiO2

Silver(Ag )dispersion (Palik)

5 E.
Y Tay- eng m

600 800 1000

-15

-25

-35

-45

-------------
metal]
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Ag (23%) + TiO2 (77%)

Composite-ereal 
Composite-eimag

0.40 -
ENZ point - 650nm

5 0 600 00 800

0.30 -

0.20 -

0.10 -

0.00  

500 600 700 800



L
Effective Medium Multilayer Comparison

Finite Difference Time Domain Simulation

Ag/TiO2 Composite

Ag = 16nm ( 23%); TiO2 = 54nm ( 77%)
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Phase

Change
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E field amplitude at 653nm , ENZ point

DFT

E field phase at — 653nm , ENZ point
DFT

725
15n

I I
11111.119.—

i,
CI 7 7

0 06

8
8
1 17

-11111111141:11.575
0.000

6.300
4.725
3.150

1 17

-------- 0.97 l'°'
-7

0.87 Z (um)

Ag thickness was chosen to be 16nm to obtain a continuous film using e-beam

evaporation while remaining as thin as possible.

G. Subramania, A. J. Fischer, T. S. Luk , Appl. Phys. Lett. , 101, 241107(2012) 34
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ENZ Sample Fabrication

Electron beam evaporation of alternating layers of Ag and Ti02
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Ti02 = 54nm

Ag = 16nm

G. Subramania, A. J. Fischer, T. S. Luk , Appl. Phys. Lett. , 101, 241107(2012)



Optical Characterization and FDTD Simulation
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➢ Transmission reduces with increased number of pairs — Metal absorption

➢ Experimental absorption about 10% more than FDTD

G. Subramania, A. J. Fischer, T. S. Luk , Appl. Phys. Lett. , 101, 241107(2012)



Approach to Reducing Metal Absorption effe
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> Light polarized along the grating

> Ideally, grating period as small as possible for effective

medium

> Increased transmission

> ENZ wavelength redshifts with grating duty cycle
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Light Confinement in Nanoscale Area

Current approach : Surface plasmon based using
EOT phenomenon - E

Au
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(In collaboration with S. Foteinopoulou- Univ. of Exeter, UK ( Now at UNM )and I. Brener)
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G. Subramania, S.Fbiteinopoulou and I. Brener, Phys. Rev. Let., 107, 163902(2011).



Electric field (Ex)
1

Key Results
Electric field enhancement in the small gap
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We can achieve large electric field enhancements in an ultra-subwavelength area (— (24250)2)
across broadband that can be controlled via structural geometry

Power Density (Sz) Power Fraction through the small gap
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Surprisingly, nearly 30% of the transmitted power that is channeled through an area —

(24250)2 that is 1/60th of the unit cell area.



Mechanism: Quasi-static response

EX

X

• Near-instantaneous response of
charges even at mid-IR

• No effective current flow between

small and large gap region on either

side
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• Voltage across the small and large gaps are
nearly equal
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G. Subramania, S.Foteinopoulou and I. Brener, Phys. Rev. Let., 107, 163902(2011).
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Fabrication- Some recent results
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Topological Photonics
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Topological Protection: Approaches that exploit topological properties of the phase space of a

system can offer stability and robustness to the system of interest from external disturbances

such as scattering, decoherence etc.

a
Genus = 0 2

Total Gaussian
curvature

Topological invariant : genus =
1

WcIA = 2(1 -g)
:"r fsurface

• Need to create a topological transition to affect the system.

➢ Non-trivial topological system can provide new ways of control in electronics and
photonics. (Eg. Loss-less unidirectional, scatter-free transport )

L. Lu, J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nat Photon 8, 821-829 (2014).
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Motivation: Topological Systems in Electronics Sandia
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Electronic Topological Insulators : Systems exhibiting Quantum Hall Effect 4 2DEGs

Time reversal symmetry is broken by applying magnetic (B) field

• Discrete highly degenerate Landau Levels

• Conducting edge states within insulator gap
• Needs high B fields
• Low temperatures

• Topologically protected "one way" electronic transport

Conducting edges Landau Levels i 1 heB
E11 = n +  /

_____ 1 
2) az_____)

_____________) _ m >, Ef,_____ c:Th--____.-• 4c• 2)  
c I co, =a)
in  

Insulating inside

Density of States

It turns out appropriately designed photonic structures can exhibit
similar topological properties too! F. D. M. Haldane and S. Raghu, Phys. Rev. Lett.

100 (1), 013904 (2008).

eB

rn

B
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http://jqi.umd.edu/glossary/quantum-hall-effect-and-topological-insulators



Topological Photonics Research Activities
Metamaterial Photonic Topological Insulator

A. B. Khanikaev et.al. Nat Mater 12 (3),
233-239 (2013).

Strain induced pseud mag. field
in optical fiber arrays and edge transport

Simulation of Oneway
ed e trans• ort ..... - ...

11,

Valley hall Photonic
Topological Insulator

0.:

K.Fang, Z. Yu , S.H.Fan , Nat.
Phot. 6 , (2012)

(I)) ............
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2e;,10r. isgn ap
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3D All dielectric PTI
m>0 to < 0

A. Slobozhanyuk, et.al. , Nat
Photon 11 (2), 130-136 (2017).

M. Tzuhsuan and S. Gennady,
New Jn. Phys.18 (2), 025012
(2016).

One- way scatter transport at microwave
frequency 4GHz in 2DPCs

I I 1 1 1 1,
s 1 1 1 11

1 1 1 1 1 1
1 1 1 1 1

-
.110mm 4•1111. •

ly t
Z. Wang, Y. Chong, et.al. , Nature
461, 772 (2009).

M.Rechtsman et.al. Nat. Phot. 7 (2013)

Topological edge states in silicon
photonics,

Non-reciprocity in optical
regime

(P-3)

L. D. Tzuang, et. al. Nat
Photon 8 (9), 701-705 (2014).

Port 1

( 
Port 4 )

( Port 2 )

S. Mittal, V. V. Orre and M.
Hafezi, Opt. Expr. 24
,15631(2016).
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Topological Photonics Spin Hall in Dielectric PC ora,

PRL 114, 223901 (2015) PHYSICAL REVIEW LETTERS
week ending
5 JUNE 2015

Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material

Long-Hua Wu and Xiao Hu*
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science,

Tsukuba 305-0044, Japan
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

(Received 10 February 2015; published 3 June 2015)
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Photonic Bandstructures Honeycomb Photonic Crystal

r

lat
'r•••

.... .....
ma. •••••

.... ... ..... ..... ....

......,r.••••• •••••
..... ....

.•••• am. .m.
...•....

.....• .m..... •....... ...1. .m' ...

.0.. .7,... ......... ..n4.7 ...... ......... ...r. •... .....•••• • •

• •
alli

-- •
a• •

- -
• ••

-
•

•

•

•

•

•

•
WM.
•
MEP

••••• • • •
Ma, ..W. •Is •Ils

Calculated with FDTD (Lumerical ®)

0.25a

b)
0.7

0.6

---.0.5

ru 0.4

2 0.3

0.2

0.1

h

Sandia
Phrtional
Laboratories

K

a/R = 3.0

r=0.13a

M

48



Circular Hole Array Honeycomb Lattice Photonic Crystal

Compressed lattice a/R = 3.1

A=a-2 (R+r)

6=R -2r

Topologically Trivial PC

M
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Min

P. D. Anderson and G.Subramania, Optics Express 25 (19), 23293 (2017).



Circular Hole Array Honeycomb Lattice Photonic Crystal

Expanded lattice a/R = 2.9

A=a-2 (R+r)

6=R -2r
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P. D. Anderson and G.Subramania, Optics Express 25 (19), 23293 (2017).



Circular Hole Array Honeycomb Lattice Photonic Crystal Sandia
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Hole radius (ri dependence Membrane thickness
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Unidirectional Edge State Propagation

Zig-zag interface
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Next ...
Fabrication on Silicon on Insulator (S01) - Membrane

Coat with e-beam resist

Reactive ion etching

Ebeam Lithography Pattern

M, •••• 41•1. ••• .111. MID .101. ••••• •

Wet etch Si02

_

-r-
•••• -C

••••• O. ell. ••••
••••• al••• •••• 40. 41111. 411.• 4I•1. VW/ .•••



Fabrication on Silicon on Insulator (S01) - Membrane
Topological/Trivial Interface structure

Trival
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Topological edge state in III-Nitride Honeycomb Photonic
Crystal Rods

Modeling
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Quantum Dots for Single Photon Sources
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Single Photon Source: Photon Statistics

 00 000 00000 0 0 0 00 0 0 0 Anti-bunched

 *0 000 SO 00 • 0 0 0 ON 0 • Random, laser

000 0 00 0 0 0000 0 00 OCO 00 Bunched photon

source: J.S. Lundeen

• Quantum communication
• High bit rates than attenuated laser

• Long distance secure comm.

• Quantum repeaters ( with
indistinguishability)

• Quantum metrology
• Measurement of Iow absorption

• Single molecule level detection ( in
combination with high efficiency SPD)

• Quantum computing
• Qubit operations

• 'flying' qubits J
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Quantum
g(2)(t = 0) <1
e.g., SPS

Classical
g(2)(t = 0) 1
e.g.,Thermal,LED
, Laser

Desired properties of practical .1
single photon sources (SPS) 

•.• Near 100% probability of

emitting single photon : g2(0)-0

• High single photon rates

• High extraction or collection

• Mode quality

• Room temperature operation

• Electrical injection

• — 100% indistinguishability



Motivation for InGaN Quantum Dot SPS

Room temperature, electrically-injected, chip-scale single photon source

Large exciton binding energy so can enable room temp. operation

Path to electrical-injection/chip-scale integration

• Photoelectrochemical (PEC) Etching:

Very few wet etches work for lll-nitrides

• Band gap selective (Etch lnGaN over GaN)

Dopant selective, light intensity dependent, etch current can be monitored

Laser or lamp excitation (Xe arc lamp, tunable ps Ti:S)

KOH (-0.1M) typically used as electrolyte

Pt
Electrode

Electrolyte solution (KOH) }
Fiber-coupled
light source
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PEC etched InGaN/GaN QWS

GaN

InGaN QW



Fabrication of InGaN QDs via PEC etching

Quantum Size Control: Use size quantization to control QD size

Self-limiting PEC etch process:
big QD small QD

2.7eV
pump

absorption

PEC etching

2.7eV
pump

No absorption

PEC etching stopped

• For QDs, band gap depends on size
•As etch proceeds,
• QD size gets smaller, band gap goes up

• Etch terminated for Eg > Ephoton pump

• Self-terminating etch process

• Band gap selective

• QD size depends on PEC wavelength

• Monodisperse QD distributions ??

450

440

430
CI

420

410

400

= 440 nm PEC

InGaN

7.9 nm

3.3 nm 430 nm PEC

2A nm
Al."(11fiffifICRICAMPIC Pla PICPICHANIMMPINUMM6141.1641.1.

nm 420 rirn PEC
fal gal all Q., 10 Q., 10 QV., .1 Q101 .1 WI .1 H101 ilft,

410 nm PEC

2 4 6 8 10
QD diameter (nm)

12

G. Pellegrini, et al., Journal of Applied Physics

97, 073706 (2005).

Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano

Lett. 14, 5616-5620, doi:10.1021/n1502151k (2014).



Transmission Electron Microscope Images

Capped InGaN QW

GaN Cap
ilia.loriiin

inGaN under layer

n-GaN

Sapphire

before PEC etch

InGaN QD

GaN Cap

inGaN under layer

after PEC etch
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• High-angle annular dark-field (HAADF)

TEM images

• Sample etched at 420 nm

• EDX mapping shows that dots are

inGaN

• inGaN QDs are epitaxial to the

underlying GaN

• 2% inGaN underlayer + GaN cap

• GaN cap provides partial passivation

InGaN QD after PEC etch

Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano

Lett. 14, 5616-5620, doi:10.1021/n1502151k (2014).



Photoluminescence from fabricated InGaN QDs

Capped InGaN QW

GaN Ca.

InGaN under layer
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Photoluminescence (PL) data:
375 nm pump (ps pulsed)
10K PL data
PL wavelength determined by
PEC etch wavelength
PL linewidth: 24 nm 4 6 nm

• Quantum size-controlled PEC
etching works!

As narrow as 6 nm FWHM is consistent with

a narrowing of the QD size distribution
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Xiao, X. et al. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots. Nano

Lett. 14, 5616-5620, doi:10.1021/n1502151k (2014).



Patterned fabrication of InGaN QDs

➢ Deterministic placement

EBL Patterning

Ni removal + PEC Etch

Metal Evaporation + Liftoff

Dry Etch I

(.) Ai3;

E3 EREPARIFIEI
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A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, ACS Photonics 4 (9), 2165 (2017).



Capped inGaN QW

.M

GaN cap

InGaN QW 

InGaN underlayer

111.1111.11111.1.

Sapphire
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• Posts (150 — 200 nm) patterned with e-beam lithography

• Thicker GaN capping layer (— 30 nm)

• Narrow PL emission (<1 nm FWHM) observed

• Better ratio of single QD mission to background

Fabrication of single inGaN QDs
(methodology)

MGM toned

Q 
sa

W
a nowire

-

4002 -
:0)

2000)

PEC
etch 4053

Sinole

4w55

1"410)

Emission from single QDs

4Stk
00

  4 

4 200nm

100nm

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, ACS Photonics 4 (9), 2165 (2017).



IQE from InGaN QW vs QDs

QD PL pump dependence

le
Pump (m

IQE QD vs QW

OW

40.2 %

4.3 nA.
as. D. •—•—•—• —•—• —•—• —•

10
Pu
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• Significant improvement in IQE between QW and QDs
• Cause:  QDs are efficient emitters ; Also poor material

etched away

A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, ACS Photonics 4 (9), 2165 (2017).



Single Photon Measurement: HBT experiment

• Observation of antibunching : g2 N 0.5 for PEC-etched InGaN QDs

• Next steps:

• Thicker GaN cap

• Reduce nanowire radius

• Emission rate enhancement

• Enhanced light extraction

HBT Experimental Set-up

•

BS
SPAD

9000

8000
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Pulsed g2 data
I I I I I I I I I I I I
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1
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40 50 60 70 80 90 100

Delay (ns)
A. J. Fischer, P. D. Anderson, D. D. Koleske, and G. Subramania, ACS Photonics 4 (9), 2165 (2017).



Next Incorporate in PC cavity

EBL Patterning Metal Evap. + Liftoff Dry + Wet Etch PEC Etch

Spin-coat FOX16 TiO2 dep. + EBL Membrane formation

omb .--
••••• 11••..".

AN. AMP

AND •M•
QM.

41MI. 41M• 4M. 41 Mb
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Summary

• E-beam Litho based Logpile Ti02 PC

• Spontaneous emission control in logpile Ti02 PC

• Epitaxially grown GaN logpile PC

• Low-threshold multicolor nanowire lasers

• Far-field emission control Quasiperiodic structures

• PEC etched size controlled lll-nitride quantum dots
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Collaborators
• Art Fischer • Joel Wendt

•Dan Koleske •Thomas Beechem

• Duke Anderson •Paul Clem

•George Wang • Jeff Brinker

• Yun -Ju (Alex) Lee •Bernadette Sanchez

• Igal Brener •John Nogan

• Jeremy Wright • Ed Gonzales

• Stavroula Foteinopoulou • Cathy M

• Jon Wierer • Doug Pete

• Willie Luk • Carlos Sanchez

•Weng Chow • Tony Coley

•Mike Coltrin • Travis Young

• Xiaoyin Xiao
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Thank you for your attention!
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Back up slides



Impact and Future Challenges

Summary of DG Structure properties 

> Large field enhancement ( > 20X)

> Subwavelength confinement - X2/5002

> Broadband transmission ( X - 20 flm range)

Impact 

> PDOS enhancement — MidIR sources, Energy conversion, midlR based sensing and

detection,

> Non-linear enhancement — Switching, SHG, Parameteric conv., Raman

Sandia
National
Laboratories



Logpile PC Cavity

Top 4 layers
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Transmission Electron Microscope (TEM)

Images
Uncapped InGaN QW

InGaN QW

n-GaN

Sapphire

445 nm PEC etch

• High-angle annular dark-field (HAADF) TEM images
• Samples etched at 420 nm and 445 nm
• Energy dispersive x-ray mapping

• QDs on surface are InGaN

• Red = indium, green=gallium

• lnGaN QDs are epitaxial to the underlying GaN
• No underlayer, no cap 4 PL is not very bright
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InGaN QD internal auantum efficiencv
Capped InGaN QW

M=0.il iliv
InGaN underlayer

n-GaN

Sapphire
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• Compare 10K and RT PL efficiency

•Assumes 10K PL is 100% efficient

• PL Intensity drops by >100X after QD etching

• IQE goes up by almost 10X after QD etching

• QDs are expected to have better IQE
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cajainv-resolved PL data from InGaN QDs
K7iGtf4ipm

n-GaN

Sapphire

0.1
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i
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TRPL data:
405 nm pump (- 2 ps, pulsed)

Resonant pumping into lnGaN

Room temperature TRPL data

Hamamatsu streak camera data

17X change in PL lifetime

Lifetime is expected to be much
shorter for QDs

• Shows that we have
fundamentally changed the
lnGaN material

• QW 4 QDs



Visible Frequency Logpile Photonic Crystal
Choice : Ti02

b) 2-8 • - 0.032
— n (evaporated)

2.6
— k (evaporated)

0.024

c 2.4 - 0.016 -14

2.2 - • 0.008
•

2 • 0
300 500 700 900

Wavelength(nm)
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Requirements: 

• High enough index with low loss in the visible :

•n 2.3-2.4 in the visible /w k< 0.015

• Easy to deposit :

•Sputtering, evaporation, solgel, Atomic Layer Deposition

Band Structure Calculation 
Solve Electromagnetic wave equation for Plane wave 

E(r, t) OC e""

H(r, t) oc e""

V X
1

V x H(r)

2

H(r)
c

In a periodic potential

(r + R) = (r)
R = ci,"1 + a2j) + a3'1

Apply Bloch's Theorem

E, H(r + R) = E, H(r)



Plane Wave Expansion Method

Reciprocal (K) space

e(r) =Ie(G)eiG.r E, H(r) =1E , H (G)e-i(-k-FG).1,

G   G

Bloch Waves H(G) = H x(G).Z + H j,(G)j, + H z(G)i'

Eigen value equation
(

(  1 
2

Vx Vx H(r) = w HO I=>
L.(r) j c j

Photonic Band Structure for TiO2 logpile
0.8

0.7
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0.4
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D
r x

Wavevector
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Reciprocal Lattice vector

G • R = 27-in

a2
WAH(k,=  2,, 

112  
H,,(k)

c 
Band index

1st BZ

Wave vector within the first BZ

Eigen value equation becomes a
matrix equation for which you can
write a code and solve for band
structure within the first Brillouin zone.

• n - 2.3

• 4% bandgap

• - 20nm @ 500nm



Emission Lifetime Measurements - TRPL
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• Faster lifetime in PC vs. in the reference/ no PC

• Lifetime similar for both lattice constant PCs

Ideally expect longer lifetime inside the

gap ( for a= 350nm) and shorter for

outside ( a = 400nm).

Time (ns)
80

414.1mil

Possible reasons:

• Fewer layers of PC

• Surface QD emission
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Summary / Future Possibilities

GaN

Sandia
National
Laboratories

• Nanotemplated 3DPC growth possible ( also demonstrated by
UIUC group in GaAs)

• The GaN grows epitaxially maintaining crystallinity

• Solid state lighting app.
• Introducing InGaN QW emitters within the 3DPC during growth
• Newer QW geometries ? ( axial vs. radial)
• Electrical injection

Fabrication is time consuming and challenging at this point !

Investigating 2DPC GaN nanopillar array based light emission

d a

h

1 7 •

w/ G. Wang , I.

Brener, T.S. Luk



Multiple Laser Pixels Coexcited

Emission from 4 adjacent laser pixels. Photonic Crystal Laser Pixels

3x104

2x1 04

>1

Ci)
c
CI)

-. 1)(104

0

380 390 400 410 420

Wavelength (nm)

Pump Spot

Wright, J. B. et al. Multi-Colour Nanowire Photonic Crystal Laser Pixels. Sci. Rep. 3,

2982, doi:10.1038/srep02982



Emission from single InGaN QDs

Capped inGaN QW
GaN cap

InGaN underlayer

n-GaN

Sapphire
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• Posts (150 - 200 nm) patterned with e-beam lithography

• Fabricate lnGaN QDs at deterministic locations

• GaN cap - 10nm

• Narrow peaks emerge revealing QD formation

Fabrication of single inGaN QDs
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Light Control in Nature Via Nanostructuring

Morpho Butterfly

(M. Sulkowskyi)
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• Color response highly sensitive to different vapors

-

inm::
usury-A sprzol WCOSEI

to aliroront vapwrs

* R.A. Potyrailo et. al. , Nature Photonics , 1, 123(2007). 83



S Nval
Single Photon Source based on Quantum Detrrat°Ns

Diamond

Optical cavity
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Fabrication procedure in GaN

EBL pattern in
PMMA

—

H2SO4—based Ni removal

KOH based wet etch

Ni evaporation and lift-off

012 based dry etch

Sandia
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Pump spot is tunable in size and power density. 606,

Spatial Filter

ND Filter

CameraLens Spectrometer

Photonic Crystal

Beam SP fitters
1111W 11116110

A low lasing threshold is achieved with <

500kW/cm2 for all PC lasers fabricated.

Optical response — low threshold lasing
Array Element Dimensions:
d 145 nm anclfm.
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Multicolor Laser Array
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Wavelength (nm)
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• Wavelength tunability (lattice

constant and nanowire diameter ).

• Multiple color laser emission on a
single epitaxial wafer covering a

spectral range from 380-440nm.

Gain from multiple gain sections

— InGaN MQWs

- InGaN Underlayer

• Multiple gain regions can
simultaneously lase

• Pathway for enhancing the

available lasing spectral range



Nanowire Photonic Crystal Lasers
(Jeremy B. Wright, Sheng Liu, Alexander Benz, George T. Wang, Qiming Li, Daniel D.

Koleske, Ping Lu, Huiwen Xu, Luke Lester, Ting S. Luk, lgal Brener)

0.5

0.4

0.3

L.L.1
0 0.2

0.1

0.0

Why Lasers in Solid State Lighting? 

----LED
-Low Threshold Laser
-High Threshold Laser

M. Coltrin, Sandia

0 1000 2000 3000 4000 5000 6000

Current Density (A/cm2)
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The LED "efficiency droop" problem:
• lnGaN LEDs exhibit a decrease in efficiency at

high drive currents
• limits the operating current density
• increases the cost per lumen

➢ 4 color lasers suitably combined
can achieve high color rendering

➢ Lasers can potentially mitigate the
efficiency droop problem !

Beam-splitters
lasers and detectors

blue

green
yellow

Chromatic
beam-combiners

m irr or

Mirror

Optics
and

diffusers

A. Neumann et al., "Four-color laser white illuminant demonstrating high color-rendering quality," Opt.

Express, vol. 19, pp. A982-A990, 2011.
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Metal-Dielectric Visible Epsilon Near Zero Metamat(erer,„
Engheta, N. Circuits with Light at Nanoscales: Optical Nanocircuits
Inspired by Metamaterials. Science 317, 1698 (2007).
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G. Subramania, A. J. Fischer, T. S. Luk , Appl. Phys. Lett. , 101, 241107(2012)
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Non-resonant Broadband Ultra-subwavelength Light confi e
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Electric field enhancement in the small gap
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➢ Broadband transmission and electric field enhancement
➢ Ultrasubwavelength confinement : (X/250)2 (@ 10 f.im)

G. Subramania, S.Foteinopoulou and I. Brener, Phys. Rev. Let., 107, 163902(2011).

C- al



InGaN Photoelectrochemical (PEC) Etchin
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Photoelectrochemical (PEC) Etching:

Very few wet etches work for lll-nitrides

• Band gap selective (Etch lnGaN over GaN)

• Dopant selective, light intensity dependent, etch current can be monitored

Laser or lamp excitation (Xe arc lamp, tunable ps Ti:S)

KOH (-0.1M) typically used as electrolyte

Pt
Electrode

h

1

 )Electrolyte solution (KOH)
Fiber-coupled
light source

PEC etched InGaN/GaN QWS

GaN

InGaN QW



Possibilities

➢ Laser arrays that span a broad spectral range

➢ Near-vertical low threshold single-mode
emitters

➢ Possible to fabricate high density of emitters
with a larger wavelength span

➢ Potential extension of lasing spectral range
all the way to the green.

➢ Significant technological implications for solid
state lighting , projectors and displays.

Sandia
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,141/11P ,,,41/1119h., 10 mi

Wright, J. B. et al. Multi-Colour Nanowire Photonic Crystal Laser Pixels. Sci. Rep. 3,

2982, doi:10.1038/srep02982



Outline

➢ Background and Motivation

➢ 3D logpile photonic crystals

➢ Ti02

➢ GaN

➢ 2D photonic crystals

➢ GaN 2D PC lasing

➢ Topological PC structures

➢ GaN QDs for single photon sources
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Controlled Coating of Cdse Self-assembled Monolayiffl .ja:bOrines

1.

2.

3.

4.

On Ti02 Rods

Coat TiO2 wp with neat 3-mercaptopropyltrimethoxysilane (70 °C 3
min)

Rinse with chloroform

Bake wp on hot plate to form linkage (120 °C, 30 min)

Place TiO2 wp in TOPO-capped CdSe in toluene (RT, 1 hr)

Coat with MPS

(www.nn-labs.com)

Rinse off MPS

Bake to form self-
assembled

monolayer(SAM)
Submerge in CdSe
suspension to

exchange ligands

P. Guyot-Sionnest and C. Wang, J. Phys. Chem. B, 107, 7355 (2003)
J. Pacifico, D. Gomez, and P. Mulvaney, Adv. Mater. 17, 415 (2005)

CiSe
Cd

MPS
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TEM images

Wet etch using KOH process
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