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21 Outline

Reentry environments
Simulation tools
Current research and development areas

Validation
> SPARC flow validation
° Arc-jet modeling
° Flight Vehicle Simulation
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+1 Flight Vehicle Analyses

Flight vehicle analysis steps

> Aero model development

° Vehicle forces and moments as functions of Mach number, boundary layer
state (laminar or turbulent), and vehicle orientation [
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° Trajectory calculation

° Integration of newton’s laws of motion to determine vehicle flight history

o Aerothermal environment calculation

° Determination of the thermal environment surrounding the vehicle

> Material thermal response calculation

o Computation of vehicle temperatures and shape change due to ablation

o Structural response to flight environment

° Determination of the vehicle’s substructure and internal components to flight MaST Flight Vehicles
environment loading
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Simulation tools
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Simulation Tools

Fluid flow simulation

o Correlations, 2IT-SANDIAC-HIBLARG

° MYSTIC, SPRINT
> DPLR, US3D, SPARC
° Icarus, SPARTA

Boundary layer stability analysis
> Correlations
o STABL2D, LASTRAC
° STABL3D
> BiGlobal solver

Material thermal response
o CMA, Chaleur
o ParCMA, ParChaleur
> ASCC, SMITE
> Coyote, SPARC
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71 Legacy Methods

Understand

> Engineering codes like 2IT-SANDIAC-HIBLARG, CMA, and EMLOSS work
tor previous flight preparation and post-test analysis

° Benefit from understanding the methods and assumptions

Maintain
> Small effort to modernize code syntax and methods
> Ensure that these tools are available moving forward

> Tools are continuously used for both research and applications

Improve when possible
° Time-to-solution is much shorter than modern codes
> Enables large data set generation for Monte-Carlo analysis

> Swap solvers in integrated code suites when possible
o 2IT-SANDIAC-HIBLARG and BLIMP to full Navier-Stokes
> CMA to 3D SPARC where appropriate




s | State-of-the-Art Methods

NS Solvers becoming production methods
> Many validation efforts currently ongoing
° Aided in development of flight vehicle aerodynamic database
° Used to assess flight data for laminar/turbulent flow
° Delivering surface heating data to MTR codes
> Provides a good, high-fidelity research tool

Stability analysis methods

> Working on validation of physics-based transition analysis

Multi-dimensional material thermal response
° Currently under development

o Utilizing arc-jet data as well as flight data
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Current research and development areas




0| SPARC Development

Flow solver

° Perfect and reacting gas models
° 5 species air, 11 species weakly ionized air

° Turbulence modeling: RANS models (now), hybrid RANS-LES (planned)
o Spalart-Allmaras, SST

° Research on high-order accurate numerical schemes
> Validation of flow solver

° Enable trajectory simulations
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n | SPARC Development

Material solver
° 1D solver frame to mimic legacy solvers

° Implementing monolithic thermal solver
° Solve heat transfer and gas continuity equation with the same system

> High-level redesign for modularity

Numerical solver techniques
o Automated CFL. controller
> Matrix-free method to accelerate convergence

> Working with Trilinos development team to incorporate modern linear solvers
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Full Trajectory Analysis

Develop code suites to analyze a
vehicle’s aerothermal performance from
pierce point to impact

> Legacy methods exist — serve as a guide

° Improve capability by utilizing high-fidelity

methods, NS and DSMC

Utilize automation where possible

° Freestream condition adjustment

° Grid adjustment for freestream conditions

Bridge the gap between regimes
> DSMC used for high altitude cases
> NS used for low-mid altitude cases

Material shape change

> Couple fluid to thermal solvers to capture
vehicle shape change throughout flight

Vehicle dynamics

° Inform flight dynamics solver to enable 6 DOF
simulations

Ensure continuity of modeling from
entry to impact
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13 | Trajectory mode with US3D

Modifications to CFD solver

B _Transilion on
° Build an atmosphere module within the | iy e
=
code -]
> Wrap flow solver with an outer loop to E :‘
iterate over trajectory waypoints 2 | = =
. . . . . x ¥
o Utilize shock tailoring technique to ensure 2 [ § / .
solution quality 1\ -
o . E - § forward on the bod
° Assess boundary layer transition using S ' "
. .. . o [
correlation inline with the flow solver S T L aminar neatin
> Ensure robust transition mechanics LN
> Solve trajectory using one of the following L

modes: Vehicle Axial Distance (m)

o Standard solve for individual waypoints

° Non-linear perturbation solver to move from one

) Example calculation of heat flux variation
waypoint to the next

across an arbitrary trajectory
° Continuously vary flight condition via interpolation

between waypoints




i | Multi-fidelity Solver

Enable rapid assessment of flight vehicle performance and thermal loading
for an arbitrary trajectory

o Utilize low-, medium-, and high-fidelity solvers to populate the aerodynamic performance
and thermal loading across a vehicle’s intended envelope

o Take advantage of lower fidelity methods low cost and anchor against high-fidelity data
° Smartly sample a vehicle’s envelope to minimize computational time

° Build a sufficient database to enable trajectory design and optimization.
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s | Material Modeling

Micro- and mesoscale
simulation

o Utilize micro-ct and SEM to
image decomposing ablators

1 1 < ‘ 73S : mr‘:‘ o) ER® 500um
° Analyze image to simulate fiber 3 - - M0 IS

rvaterial and surtonndine maktis Micro-CT and SEM scan meshes from Borner in
g IHJMT 2016

° Calculate composite material
properties from pure properties
> Conductivity
° Macro-scale ablation rates

° Porosity

Heat Flux (W/m2)
1.000e+

> Tortuosity

> Compare to sample created at
Sandia of common decomposing
ablators

Sample fiber meshes for use in DSMC
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Validation
> SPARC flow validation
° Arc-jet modeling
° Flight Vehicle Simulation




71 SPARC Flow Validation Sets

Tunnel 9 Sharp cones

o Frozen laminar and turbulent flows

Double cone

° Laminar shock/shock, shock/boundary layer
interaction

> Mild to strong thermochemical non-equilibrium

HIFiRE-1
° Turbulent shock/boundary layer interaction

> Nonreacting flow

HEG Cases

> Reacting laminar flow over various shapes
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s | Arc-jet modeling

Provides validation for fluid flow and material thermal response

> High temperature, thermochemical non-equilibrium
° High heating rates with material ablation
o Ideal for testing fluid/thermal coupling

Current validation case
° NASA Ames AHF and IHF
> AEDC H1, H2, and H3
° DLR I.2K and L3K

Mach
6.67

g 5.01
3.34
i 1.67
0.00

Simulation of NASA Ames IHF arc-jet

400
350 |

300 |

200 |
150 |-
100 |

50 |

Prabhu et al (DPLR)
. USs3D

® SPARC
‘['.."‘laIIl- "n
:"00.00.0.0.....:..'.:0“"--
250 | LR R “WJ“*
0..."l
.
«
[ ]
n
*
L]
|
]
o
i ll..l..l.l
0 0.5 1 1.5 2
y (in)

Surface heat flux comparison on an

isoq sample




v | Arc-jet modeling

Provides validation for fluid flow and material thermal response
° High temperature, thermochemical non-equilibrium
> High heating rates with material ablation
o Ideal for testing fluid/thermal coupling

Current validation case
° NASA Ames AHF and THF
- AEDC H1, H2, and H3
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20 | Flight Vehicle Simulation

V & V efforts are centered around a legacy recovered
ballistic reentry vehicle.

Trajectory and transition history obtained from flight data.

Aerothermal environment computed with a full set of tools
including correlation-based approaches (Blunty, LoVel), an
inviscid-boundary layer approach (2IT-SANDIAC-
HIBLARG), and full Navier-Stokes approaches (US3D,
SPARC).

> Code-to-code heating comparisons

° Angle-of-attack effects investigated

° Turbulence model comparisons for the Navier-Stokes approaches ‘
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Flight Vehicle Simulation

Material thermal response computed with 1-D uncoupled approaches (CMA,
Chaleur, SPARC) and a coupled multi-D approach (SPARC)

> Code-to-code comparisons

2 1-D VS. multl-D CompariSOﬂS Pyrolysis Gas Ablating Surface

> Effects of coupling investigated PErE
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Variability and Uncertainty analysis using W \\\\\\\\\\\\\ AN
Dakota driving CMA \ Virgin Composite
| Sub-Structure
/[////

Comparisons to flight data include:
° In-depth temperature histories
° Ablation depths (pyrolysis depth, char depth, and surface recession)
° Heatshield density profiles




2 | Additional Work

Meso-scale modeling

= Resolve fiber-scale phenomena
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= Determine effective properties of composites
= |nvestigate failure mechanisms
= |nform macro-scale codes (CMA, SPARC)

DSMC

= Simulate flow through porous media — determine effects of ablation on
permeability/tortuosity

= |nvestigate surface chemistry reactions

Experiment
= Manufacture composite materials in-house
= Utilitze benchtop experiments to better characterize composites

= Utilize solar furnace/environmental chamber to simulate aeroheating
environment. Examine ablative behavior of composites
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Summary

Sandia analyzes numerous aspects of the reentry environment
> We utilize a unique combination of simulation tools and facilities to deliver results

Tool development activities are necessary to provide better solutions to the customer. We
work to:

> Understand legacy models
° Maintain models to ensure they are up to date

> Utlize incremental improvements of production models to maintain a balance between
performance and capability

° Improve models to solve the challenges of the future

Current R&D is focused on solving all aspects of the reentry environment, including:
> Aerodynamics
> Aerothermodynamics
°> Boundary layer transition
° Thermal
o Structural/Vibration

Verification & Validation is a necessary step toward ensuring that the highest quality
simulation tools are available




