
A New Approach for Distributed Hypothesis Testing with Extensions to

Byzantine-Resilience

Aritra Mitra, John A. Richards and Shreyas Sundaram

Abstract— We study a setting where a group of agents
receiving partially informative private observations seek to
collaboratively learn the true state (among a set of hypotheses)
that explains their joint observation profiles over time. To solve
this problem, we propose a distributed learning rule that differs
fundamentally from existing approaches, in the sense, that it
does not employ any form of "belief-averagine. Specffically,
every agent maintains a local belief (on each hypothesis) that is
updated in a Bayesian manner without any network influence,
and an actual belief that is updated (up to normalization) as
the minimum of its own local belief and the actual beliefs
of its neighbors. Under minimal requirements on the signal
structures of the agents and the underlying static, directed
communication graph, we establish consistency of the proposed
belief update rule, i.e., we show that the actual beliefs of
the agents asymptotically concentrate on the true state almost
surely. As one of the key benefits of our approach, we show that
our learning rule naturally extends to scenarios that capture
misbehavior on the part of certain agents in the network,
modeled as per the Byzantine fault model. In particular, we
prove that each non-faulty agent can learn the true state of the
world almost surely, and identify conditions on the observation
model and the network model for this to happen.

I. INTRODUCTION

Various distributed learning problems arising in social
networks (such as opinion formation and spread on social
and political issues), and in engineering systems (such as
target recognition by a group of aerial robots) can be studied
under the formal framework of distributed hypothesis testing.
Within this framework, a group of agents repeatedly observe
certain private signals, and aim to infer the "true state of the
world" that explains their joint observations, a task that may
prove impossible for any single agent to achieve in isolation.
While some of the earlier works on this topic assumed
the existence of a centralized fusion center for performing
computational tasks [1], [2], the focus of this paper will be
on scenarios where interactions among agents are captured
by a communication graph. A typical belief update rule in
the latter setting combines a local Bayesian update with
a consensus-based opinion pooling of neighboring beliefs.
Specifically, linear opinion pooling is studied in [3]—[5],
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whereas the log linear form of belief aggregation is studied
in the context of distributed hypothesis testing in [6]—[10],
and distributed parameter estimation in [11], [12]. Notably,
exponential convergence rates are achieved in [4], [6]—[9],
while a finite-time analysis is presented in [10]. Extensions
to time-varying graphs have also been studied in [5]—[7].

In [7, Section III], the authors explain that the commonly
studied linear and log-linear forms of belief aggregation
are specific instances of a more general class of opinion
pooling known as g-Quasi-Linear Opinion pools (g-QLOP),
introduced in [13]. The main contribution of this paper is
the development of a novel belief update rule that deviates
fundamentally from the broad family of g-QLOP learning
rules. Specifically, the learning algorithm that we propose in
Section III-A does not rely on any linear consensus-based
belief aggregation protocol. Instead, each agent maintains
two sets of beliefs: a local belief that is updated in a Bayesian
manner based on the private observations (without neighbor
interactions), and an actual belief that is updated (up to
normalization) as the minimum of the agent's own local
belief and the actual beliefs of its neighbors. In Section V,
we establish that under minimal requirements on the agents'
signal structures and the communication graph, the actual
beliefs of the agents asymptotically concentrate on the true
state almost surely. As we discuss in Remark 3, our approach
works under graph-theoretic conditions that are in general
weaker than the standard assumption of strong-connectivity.

Despite the wealth of literature on distributed inference,
there is limited understanding of the impact of misbehaving
agents for the problem under consideration. Such agents may
represent stubborn individuals, religious extremists in the
context of a social network, or model faults (either benign
or malicious) in a networked control system. In the presence
of such misbehaving entities, how should the remaining
agents process their private observations and the beliefs of
their neighbors to eventually learn the truth? The second
contribution of this paper is to provide an answer to this
question. To do so, we model misbehaving agents as per
the classical Byzantine fault model, and develop a provably
correct fault-tolerant version of our proposed learning rule in
Section III-B. The only related work (that we are aware of)
in this regard is reported in [9]. As we discuss in Remark 2,
our proposed approach is significantly less computationally
intensive relative to those in [9]. We identify conditions
on the observation model and the network structure that
guarantee applicability of our Byzantine-resilient learning
rule, and argue (in Remark 6) that such conditions can be
checked in polynomial time. To establish consistency of our
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learning algorithms, we develop novel analysis techniques in
Section V, which may be of independent interest.

II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1,2, , n} interacting over a time-invariant, directed com-
munication graph g = (V , E). An edge (i, j) E E indicates
that agent i can directly transmit information to agent j. If
(i, j) E E, then agent i will be called a neighbor of agent j,
and agent j will be called an out-neighbor of agent i. The
set of all neighbors of agent i will be denoted Ni. Given two
disjoint sets C1, C2 C V, we say that C2 is reachable from Cr
if for every i E C2, there exists a directed path from some
j E C1 to agent i (note that j will in general be a function
of i). We will use ICI to denote the cardinality of a set C.

Observation Model: Let = {01,02, , 0„,} denote m
possible states of the world; each 0i E O will be called a
hypothesis. Let N and N+ denote the set of non-negative
integers and positive integers, respectively. Then at each
time-step t E N+, every agent i E V privately observes
a signal si,i E st, where S, denotes the signal space of
agent i. The joint observation profile so generated across the
network is denoted Si = (81,t 82,t• • • • sn,t), where St E S,
and S = Sl x S2 x sn. The signal Si is generated based
on a conditional likelihood function /(.10*), governed by the
true state of the world 0* E O. Let li (.1 0*), i E V denote the
i-th marginal of 4•10*). The signal structure of each agent
i E V is then characterized by a family of parameterized
marginals fli(wil0) : B E O,wi E Si1.1
We make the following standard assumptions: (i) The

signal space of each agent i, namely Si, is finite, (ii) Each
agent i has knowledge of its local likelihood functions
{/i (.10p)}17_1, and it holds that (wi 10) > O,dwi E S,, and
V0 E 9, (iii) The observation sequence of each agent is
described by an i.i.d. random process over time; however,
at any given time-step, the observations of the agents may
potentially be correlated, (iv) there exists a fixed true state
of the world 0* E (that is unknown to the agents)
that explains the observations of all the agents. Finally, we
define a probability triple (S2, .F, Pe*), where St ° {c.,) :
w = (s1, s2, . . .), Vst E s, Vt E N+}, T is the a-algebra
generated by the observation profiles, and IP° is the prob-
ability measure induced by sample paths in SI Specifically,

co
Pe* = /(.10*). For the sake of brevity, we will say that

t=
an event occurs almost surely to mean that it occurs almost
surely w.r.t. the probability measure F.

Given the above setup, the goal of each agent in the
network is to discern the true state of the world 0*. The
challenge associated with such a task stems from the fact that
the private signal structure of any given agent is in general
only partially informative. To make this notion precise, define
Oe* ° {0 E 0 : (wi 10) = Vw, E Sil. In words,
Or represents the set of hypotheses that are observationally

'Whereas wi E Si will be used to refer to a generic element of the signal
space of agent i, si,t will denote the random variable (with distribution
/i (-10*)) that corresponds to agent i's observation at time-step t.

equivalent to the true state 0*, from the perspective of agent
i. In general, for any agent i E V, > 1 , necessitating
collaboration among agents. While inter-agent collaboration
is implicitly assumed in the distributed hypothesis testing
literature, we will allow for potential misbehavior on the
part of certain agents in the network.

Adversary Model: We assume that a certain fraction of
the agents are adversarial, and model their behavior based
on the Byzantine fault model [14]. Accordingly, Byzan-
tine agents possess complete knowledge of the observation
model, the network model, the algorithms being used, the
information being exchanged, and the true state of the world.
Leveraging such information, adversarial agents can behave
arbitrarily, and can in particular, send incorrect, potentially
inconsistent information to their out-neighbors. In terms of
their distribution in the network, we will consider an f-local
adversarial model, i.e., we assume that there are at most
f adversaries in the neighborhood of any non-adversarial
agent.2 Finally, we emphasize that the non-adversarial agents
are unaware of the identities of the adversaries in their
neighborhood. As is fairly standard in the distributed fault-
tolerant literature (see, for example [15]—[21]), we assume
that non-adversarial agents know the upper bound f on the
number of adversaries in their neighborhood. The adversarial
set will be denoted by A c V, and the remaining agents
= V \ A will be called the regular agents.
Our objective in this paper will be to design a distributed

learning rule that allows each regular agent i E R. to identify
the true state of the world almost surely, despite (i) the
partially informative signal structures of the agents, and (ii)
the actions of any f-local Byzantine adversarial set. To this
end, we introduce the following notion of source agents.

Definition 1. (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses 01,92 E 9,

if D(l,(.101)Illi(• 102)) > 0, where D(l,(•101)Ill2(102)) rep-
resents the KL-divergence between the distributions li(•101)
and 4(.102), and is given by:

w,Esi

The set of all source agents for the pair 01,02 is denoted by

S(01,02).3 ❑
In words, a source agent for a pair 01,02 is an agent that

can distinguish between the pair of hypotheses 01,82 based
on its private signal structure. In our developments, we will
require the following two definitions.

Definition 2. (r-reachable set) [17] For a graph g = (V, E),
a set C C V, and an integer r E N+, C is an r-reachable set
if there exists an i E C such that 1.1V,\CI > r, ❑

Definition 3. (strongly r-robust graph wr t. S(01,02)) For
r E N+ and 01,02 E 9, a graph g = (V, E) is strongly
2Note that the f-local adversarial model assumed here is more general

than the f-total adversarial model considered in [9], where the total number
of adversaries in the entire network is upper bounded by f.

3Notice that 8(01, 02) = 8(02, 01), since D(li(191)111i(162)) >
o < > D(17,(102)111i(101)) > O.

ml2e loollli(• 1 192)) = E (wi ) log  (1)
(wi 102)



r-robust w.rt. the set of source agents S(01,02), if for any
non-empty subset C C V \ S(01,02), C is r-reachable. ❑

III. PROPOSED LEARNING RULES

A. A Novel Belief Update Rule

In this section, we propose a novel belief update rule and
discuss the intuition behind it. To introduce the key ideas
underlying our basic approach, we first consider a scenario
where all agents are regular, i.e., R. = V. Every agent i
maintains and updates (at every time-step) two separate sets
of belief vectors, namely, 7ri,t and pti,t. Each of these vectors
are probability distributions over the hypothesis set O. We
will refer to 7ri,t and µz t as the "locar belief vector (for
reasons that will soon become obvious), and the "actual"
belief vector, respectively, maintained by agent i. The goal of
each agent i E V in the network will be to use its own private
signals, and the information available from its neighbors to
update pti,t sequentially, so that limtoo gi,t (0* ) = 1 almost
surely. To do so, for each 0 E C), and at each time-step t
1, t E N, agent i first generates lri,t+i (0) via a local Bayesian
update rule that incorporates the private observation si,t+1
using 7ri,t (0) as a prior. Having generated 7ri,t+1 (8), agent i
updates /44+1(B) (up to normalization) by setting it to be the
minimum of its locally generated belief 71i,t+i (0), and the
actual beliefs iii,t(8), j E ,Ari of each of its neighbors at the
previous time-step. It then reports its actual belief Kt+1(0)
to each of its out-neighbors.4 Formally, for each B E
and at each time-step t 1 (where t E N), agent i updates

114,t+ (0) based on the following two steps.

• Step 1: Update of the local beliefs: 

(sz,t+118)7ri,t (8)
7i,t+i(0) =   (2)

E ii(si,t+ilep)7i,t(ep)
13=1

• Step 2: Update of the actual beliefs: 

min{ mina Eiv-, { ita,t (Oil, 7,,t+ (On
/11,,t+i (19) —  m  •

E minfrnini EN; {P.M (07)11, 7i,t+1 (Op)}
p=1

(3)
Intuition behind the learning rule: Consider the set

of source agents S(0,0*) who can differentiate between
the hypothesis B and the true state 0*. Suppose for now
that this set is non-empty. We ask: How do the agents in
the set S (0 , 0*) contribute to the process of collaborative
learning? To answer this question, we note that the signal
structures of such agents are rich enough for them to be able
to eliminate 0 on their own, i.e., without the support of their
neighbors. Thus, the agents in S(B , 0*) should contribute
towards driving the actual beliefs of their out-neighbors (and
eventually, of all the agents in the set V \ S(B, O*)) on the
hypothesis 0 to zero. To achieve the above objective, we are
especially interested in devising a rule that ensures that the
capability of the source agents S(0 , 0-1 to eliminate B is not

4Note that based on our algorithm, agents only exchange their actual
beliefs, and not their local beliefs.

diminished due to neighbor interactions. As we shall see later
on, such a property will be particularly useful when certain
agents in the network are adversarial. It is precisely these
considerations that motivate us to employ (i) an auxiliary
belief vector 71-i,t+1 generated via local processing (i.e.,
without any network influence) of the private signals, and (ii)
a min-rule of the form (3). Specifically, if iES(0, 0*), then
the sequence of local beliefs 7,,t+i (8) will almost surely
converge to 0 based on the update rule (2). Hence, for a
source agent i E 45(0, 01, 7ri,t+i(0) will play the key role
of an external network-independent input in the min-rule
(3). This in turn will trigger a process of belief reduction
(on the hypothesis 0) originating at the source set (0 , 0*),
and eventually propagating via the proposed min-rule to each
agent in the network that is reachable from such a source set.
The above discussion will be made precise in Section V.

Remark 1. As is fairly evident, the proposed min-rule (3)
does not employ any form of "belief-averaging". This feature
is in stark contrast with existing approaches to distributed
hypothesis testing that rely either on linear opinion pooling
[3]—[5], or log-linear opinion pooling [6]—[ 12]. As such, the
lack of linearity in our belief update rule precludes (direct
or indirect) adaptation of existing analysis techniques to suit
our needs. Consequently, we develop a novel sample path
based proof technique in Section V to establish consistency
of the proposed learning rule. As one of the main outcomes
of this analysis, we argue that our learning rule works under
graph-theoretic conditions that are in general weaker than
strong-connectivity (see also Remark 3). ❑

As pointed out in the Introduction, our primary aim is the
design of a distributed learning rule that is worst-case fault-
tolerant. While [9] offers a potential solution to this problem,
the following discussion motivates the alternate approach
developed in Section III-B.

Remark 2. A standard way to analyze the impact of adver-
sarial agents while designing resilient distributed consensus-
based protocols (for applications in consensus [15], [17],
optimization [16], [18], hypothesis testing [9], and multi-
agent rendezvous [22]) is to construct an equivalent matrix
representation of the linear update rule that involves only the
regular agents [23]. In particular, this requires expressing
the iterates of a regular agent as a convex combination of
the iterates of its regular neighbors, based on appropriate
filtering techniques, and under certain assumptions on the
network structure. While this can indeed be achieved effi-
ciently for scalar consensus problems, for problems requiring
consensus on vectors (such as the belief vectors in our
setting), this leads to the computation of Tverberg partitions.
However, there is no known algorithm that can compute an
exact Tverberg partition in polynomial time for a general
d-dimensional finite point set [24]. Consequently, since the
filtering approach developed in [9] requires each regular
agent to compute a Tverberg partition at every iteration, the
resulting computations are forbiddingly high. The authors
in [9] do briefly discuss an alternate pairwise learning rule
that requires agents to peiform scalar consensus on relative



confidence levels (instead of beliefs) of one hypothesis over
another. This in turn requires each agent to maintain and
update (at each time-step) a vector of dimension O(m2). In
contrast, the algorithm developed in Section III-B does not
require the computation of Tverberg partitions, and requires
agents to maintain and update (at each time-step) two belief
vectors, each of dimension m. ❑

B. A Byzantine-Resilient Belief Update Rule

In this section, we develop a belief update rule that is
able to tolerate the worst-case Byzantine adversarial model
described in Section II. We achieve this via a suitable
modification of the algorithm introduced in Section III-A.
Specifically, each agent i E R. acts as follows at every time-
step t + 1 (where t E N).

• Step 1: Update of the local beliefs: The local belief
7ri,t+i (0) is updated as before, based on (2).

• Step 2: Filtering extreme beliefs: If IN; > (2f + 1),
then agent i performs a filtering operation as follows.
It collects the actual beliefs iti,t(0) from each of its
neighbors and sorts them from highest to lowest. It
rejects the highest f and the lowest f of such beliefs
(i.e., it throws away 2f beliefs in all).

. Step 3: Update of the actual beliefs: If 1,Aii > (2f +
1), then agent i updates p,2,t+1(0) as follows. Let the
set of neighbors whose beliefs are not rejected by agent
i (based on the previous filtering step) be denoted by

c .Ari. The actual belief iti,t+i (0) is then updated
as follows:

6Pi,t+1 (9 =  
E minfrnin 

3cm 
9
P 
{µ, t(0,)1,7,,,t±i(ep)}

p=1 z ,t

{µ,j,t (0)}

(4)
If lArd < (2f + 1), then agent i updates µi,t+1(0) as
follows:

tti,t+1 (0) = 7r,,t+ A. (0). (5)

As with the learning rule presented in Section III-A, agent i
transmits iii,t+1(9) to each of its out-neighbors on comple-
tion of the above steps. We will refer to the above sequence
of actions as the Local-Filtering based Resilient Hypothesis
Elimination (LFRHE) algorithm.

IV. MAIN RESULTS

Our first result establishes the correctness of the learning
rule proposed in Section III-A.

Theorem 1. Suppose R. = V, and that the following are
true:

(i) For every pair of hypotheses 01,02 E 9, the corre-
sponding source set S(01, 02) is non-empty.

(ii) For every pair of hypotheses 01, 02 E O, V\ S(01,02)
is reachable from the source set 8(01,02).

(iii) Every agent i E V has a non-zero prior belief on each
hypothesis, i.e., 72,o(0) > 0, iti,o(B) > 0 for all i E V,
and for all 0 E O.

Then, the learning rule described by equations (2) and (3)
leads to collaborative learning of the true parameter, i.e.,
,u2,t(0*) —> 1 almost surely for all i E V. ❑

Our second result establishes the correctness of the
LFRHE algorithm proposed in Section III-B.

Theorem 2. Suppose the following are true:

(i) For every pair of hypotheses 01,02 E O, the graph
g is strongly (2f + 1)-robust w.rt. the corresponding
source set S(01,02).

(ii) Each regular agent i E R. has a non-zero prior belief
on each hypothesis, i.e., 70(B) > 044,0(B) > 0 for
all i E R., and for all 0 E O.

Then, the LFRHE algorithm described by equations (2),
(4) and (5) leads to collaborative learning of the true
parameter despite the actions of any f-local set of Byzantine
adversaries, i.e., itt2,t(0*) —> 1 almost surely for all i E R.

❑

In the following two remarks, we comment on the gener-
ality of the assumptions made in Theorems 1 and 2.

Remark 3. (Assumptions in Theorem 1) While the first
condition in Theorem 1 is a basic global identifiability condi-
tion phrased differently, the second condition on the network
structure is in general weaker than the standard assumption
of strong-connectivity made in [3], [4], [8], [10]4121. To
see why the latter statement is true, consider a scenario
where = {01,02}. Clearly, any agent i E S(01,02)
can discern the true state without neighbor interactions,
precluding the need for incoming edges to such agents.5
Finally, the assumption of non-zero initial beliefs is fairly
standard, and can be easily met by maintaining a uniform
support over the hypotheses set initially. ❑

Remark 4. (Assumptions in Theorem 2) The first condition
in Theorem 2 blends requirements on the signal structures of
the agents with those on the communication graph. To gain
intuition about this condition, suppose e = fe,, 02}, and let
there exist at least one agent i E V \ S(01,02). To enable
agent i to discern the truth despite potential adversaries in
its neighborhood, one requires (i) redundancy in the signal
structures of the agents,6 and (ii) redundancy in the network
structure to facilitate reliable information flow from S(01,02)
to agent i. These precise requirements motivate condition (i),
a point made apparent in the proof of Theorem 2. ❑

Remark 5. (Analogy with Distributed State Estimation)
Consider the problem of collaboratively estimating the state
of an LTI process based on information exchanges among
agents that receive partial measurements of the state. There
are natural connections between the setting described above,

5For the problem under consideration, the argument that the strong
connectivity assumption can be relaxed applies to more general scenarios as
well, where there does not necessarily exist any one agent that can identify
the true state based on just its private signal structure. The underlying
reason for this stems from information heterogeneity and information
redundancy among agents, features that are unique to distributed estimation
and detection type problems, but lacking in a standard consensus setting.
6In particular, for any pair 01. , 02 E 8, notice that condition (i) of

Theorem 2 requires IS(01, 02)1 > (2f + 1), if V \S(Bl , 02) is non-empty.



and the problem studied in this paper. For the state estimation
scenario, one can fix an unstable mode of the process, and
define source agents for that mode to be agents that can
detect the eigenspaces associated with that mode. Interest-
ingly, with source agents defined for each unstable mode
in the manner described above, [25, Theorem 3] and [19,
Theorem 7] (in the context of distributed state estimation)
can be viewed as analogues to Theorem 1 and Theorem 2,
respectively (modulo the requirements of non-zero priors). 17

Remark 6. Given a network of agents with associated signal
structures, condition (i) in Theorem 2 can be checked in poly-
nomial time. Specifically, for every pair 01,02 E ®, finding
the source set S(01,02) can easily be done in polynomial
time via inspection of the agents' signal structures. For a
fixed source set S(01,02), checking whether g is strongly
(2f + 1)-robust w.rt. S(01,02) amounts to simulating a
bootstrap percolation process on G, with S(91, 02) as the
initial active set, and (2f +1) as the threshold. This too can
be achieved in polynomial time, as discussed in [19]. ❑

Remark 7. (Convergence Rate) Consider any false hypoth-
esis r. We conjecture that based on our learning
rules, the actual beliefs of all the regular agents on
will (almost surely) decay exponentially fast after a tran-
sient period, with the rate of decay lower bounded by

miniEs(e,e*)nR, D

V. PROOFS OF THE MAIN RESULTS

We start with the following lemma that characterizes the
asymptotic behavior of the local belief sequences generated
based on (2). The result is standard; we provide a proof
(adapted to our notation) to keep the paper self-contained.

Lemma 1. Consider an agent i E S(0, 0') n R. Sup-
pose 7,,o(01 > O. Then, the update rule (2) en-
sures that (i) ri,t(0) —> 0 almost surely, and (ii)

(r) 1lint—>cx, 7ri,t(r) exists almost surely, and sat-
isfies iri,„„, (r) > 72,o(r). ❑

Proof. Pick an agent i E r) fl R., and define:

p,,,(e) A log  gri'
t (8) 

, t(8) log  '
tlO)  

. (6)
7rt,t (0*) 

/,(st 
= 

(s,/t 1 19'9

Then, based on (2), we obtain the following recursion:

Pi,t+i (0) = Pi,t(0) + At,t+i (0) ,Vt E N. (7)

Rolling out the above equation over time yields:

10,,,t(0) = P,,,o(0) + Az,k (0), Vt E N. (8)
k=1

Notice that {A,,,t} is a sequence of i.i.d. random variables
with finite means and variances. In particular, it is easy to
verify that each random variable Ai,t has mean7 given by
—D(l2(•101Illi(161)). Thus, based on the strong law of large

7More precisely, the mean here is obtained by using the expectation
operator E8  [.] associated with the measure IP9*.

numbers, we have t E Ai,k (8) —D(li(.119*)Illi(10))

almost surely. Dividing both sides of (8) by t, and taking
the limit as t goes to infinity, we then obtain:

t—).09
lim —pi t(0) = (.10)) almost surely. (9)

Finally, note that based on the definition of the set (0 , r) ,
D (li(.10*)Illi(•10)) > O. It then follows from (9) that

pi,t(0) —oo almost surely, and hence 7ri,t (0) —> 0 almost
surely. Part (ii) of the lemma is obvious. ❑

We are now in position to prove Theorem 1.

Proof (Theorem 1) Let 52 C C2 denote the set of sample
paths along which for each agent i E V, the following hold:
(i) for each B E \ , 7,,t(8) —> 0, and (ii) 7,,00(8*)

72,t(r) exists, and satisfies rr2,00(9*) > 7ri,o (r).
Recall that Or represents the set of hypotheses that are
observationally equivalent to the true state r from the point
of view of agent i. Hence, for each B E \ , we have
iES(0, . Based on the third condition in the statement
of Theorem 1, and Lemma 1, we infer that 52 has measure
1. Thus, to prove the desired result, it suffices to confine
our attention to the set Q. Specifically, fix any sample path
w E 52, and pick any e > O. Our goal will be to establish that
along the sample path co, there exists t(E) such that for all
t > t(e), 14,t(8) < e for all i E V, and for all 0*. This
would be equivalent to establishing that the actual beliefs
of all the agents on the true state can be made arbitrarily
close to 1 (since the proposed min-rule (3) generates a valid
probability distribution over the hypothesis set at each time-
step). We complete the proof in the following two steps.

Step 1: Lower bounding the actual beliefs on the true
state: Consider the following scenario. During a transient
phase, certain agents see private signals that cause them
to temporarily lower their local beliefs on the true state.
This in turn gets manifested via the min-rule (3) to the
actual beliefs of the agents in the network. Can this transient
phenomenon trigger a cascade of progressively low beliefs on
the true state? For sample paths in the set 52, we rule out this
possibility. To this end, define 71 miniEv 72,o(r). Notice
that yi > 0 based on condition (iii) of the theorem. Given
the choice of the sample path w, we notice that 7ii,00 (0* )
exists for each i E V, and that iri,00(8*) > ryl. Pick a
very small number 6 > 0 such that S< ryl. The following
statement is then immediate. For each agent i E V, there
exists 4(8), such that for all t > ti (6), 7i,t(r) > > O.
Define ti (6) ° maxiEv 4(6). In words, ti (8) represents the
time-step beyond which the local beliefs of all the agents
on the true state are lower-bounded by ryl — J. We ask: At
such a time-step, what is the lowest actual belief held by
an agent on the true state? More precisely, we define 72

mint E V {Pi, (s)(0*)}. We claim ry2 > O. To see this, observe
that given the assumption of non-zero prior beliefs on the
true state, and the structure of the proposed min-rule (3), 'T2
can be 0 if and only if there exists some 0 < t < t1(6)
such that (r) = 0, for some i E V. However, given the



structure of the local Bayesian update rule (2), we would
then have 7ri,t(r) = 0, for all t > t , contradicting the fact
that 7ri,t(r) > yl - S> 0,vt > WS) > t',Vi E V (the
latter fact has already been established above). Having thus
established that •-y2 > 0, define n min{ryi - 8, y2} > O. In
words, n represents the lowest belief (considering both local
and actual beliefs) on the true state 8* held by an agent at
time-step ti (8). We claim the following:

pz,t(t9*) > (S), E V. (10)

To see why (10) is true, fix an agent i E V, and consider the
following chain of inequalities:

(a) minfminiEN; fuj,f,(6) (9*)}, (b)+1 } 
iti,f,(8)+1(0*) -

E minfminjEAr I/kik (5) (B23)1, 7ri,t1 (6)+1 (ep)}
p=1

(b)
>  

E ininfminjEiv,{tj,E,(8)(ep)},,,i,E,(6)+1 (BP)}
p=1

(c)
m

E 7rt,E,(8)+1(ep)
p=1

(d)
= I,

(11)

where (a) follows from (3), (b) follows from the way 71 is
defined and by noting that ir,,t 09* > rl, Vt > ti (8),Vi E V,
(c) follows trivially via inspection, and (d) follows by noting
that the local belief vectors generated via (2) (at each time-
step) are valid probability distributions over the hypothesis

7n
set O, and hence E 7,,f,(,)+1(0p) = 1. Since the above

P=1

reasoning applies to every agent in the network, we can keep
repeating it to establish (10) via induction.

Step 2: Upper bounding the actual beliefs on each false
hypothesis: The key observation that guides the rest of the
proof is as follows. While step 1 of the proof guarantees that
the beliefs (both local and actual) of each agent on the true
state 8* are lower-bounded by (and hence, bounded away
from 0) after a finite period of time (given by ti (8)), Lemma
1 guarantees that the local beliefs on any false hypothesis
0 will eventually become arbitrary small (and in particular,
smaller than n) for each agent i E S(0, 0*).8 In what follows,
we investigate how such an event impacts the actual beliefs
of the agents in the network. To this end, given an € > 0,
pick a small e > 0 such that e < mint)), €1. Fix a hypothesis
0 0*. By virtue of condition (i) of the theorem, we know
that l S(6,19*)1 > O. Let q = diam(g) + 2, where diam(g)
represents the diameter of the graph g. Then, based on
Lemma 1, for each iES(0, 0*), there exists ti (0) such that
for all t > ti(0), 7ri,t(0) < eq. Define

f2(0) max{fi (8), iEgn,){ti (0) }1. (12)

8We remind the reader that all our arguments are specific to a sample
path w picked at random from the set a

For any agent i E S(0,0*), we obtain the following chain
of inequalities:

iti,f2(e)+1(0) (±) m

{ktj,t2 (9) (0)} 7ri,t2 (9)+1 (9)1 

E min{miniEntifiii,t2 (6) (B13)11 7'42 (9)+1 (6/23)1
P=1

(b) -4

-  

E Laik (9) (9p)}, 742(0)+1(9p)}
p=1

(c) -4

min{min,EAT,{i(3,f2(e)(0*)}, 7ri,f2(9)+1(0*)}
(d)

<

(e) „
< E < < E,

(13)
where (a) follows from (3), (b) follows from the fact that
for each i E 5(0 , 0*), we have 7r,,t(0) < eq,Vt > t2(0), (c)
follows trivially via inspection, (d) follows from (10) and
(12), and (e) follows from the way e has been chosen. In
particular, note that the above chain of reasoning used to
arrive at (13) applies to subsequent time-steps as well. We
thus conclude:

itit(e) < Vt > (6) + 1, vi E s(B, e*). (14)

We now wish to investigate how the effect of (14) propagates
through the rest of the network. If V \ S(0,0*) is empty,
then we have reached the desired conclusion w.r.t. the false
hypothesis O. If not, define

461,6)*) G
{i {V \S(0,0*)} : 1./vi n s(e, 0*)1 > o} (15)

as the set of immediate out-neighbors of the source set
(0 , 0*). By virtue of condition (ii) the theorem, if

V \ (0 , 0*) is non-empty, then ,C(1.0 '0

* 

) as definedabove

is also non-empty. Consider any agent i £(1°'°

* 

). By
definition, agent i has a neighbor in S(8, 0*) satisfying (14).
This observation coupled with equations (10), (12) can be
used to obtain a similar chain of inequalities as the ones
featuring in (13). Specifically, we obtain:

< e(q-2), Vt > (9) + 2, Vi E 46"*). (16)

With ,C,(30,0*) 5(0,0*), the above arguments can be

repeated by successively defining the sets .C,(0'0*) ,1 < r <
diam(g) as follows:

r-1 r-1

46"*) E V\ U 49,°*)} : nf U 4")*)}l > o}.
c=0 c=0

(17)
Whenever V\WerZol d9,0*)}is non-empty, condition (ii) of

the theorem implies that e'e

* 

) will also be non-empty. One
can then easily verify via induction on r that:

< E(q- (r +1)) V t > 2(B) (r + 1), Vi E 4"9"),
(18)

where 1 < r < diam(g). Noting that q = diam(g) + 2,
we obtain the desired result that /.4,t(0) < e < E, Vt >



t2(0) + diam(G) + 1, Vi E V . An identical argument as the
one presented above can be made for each false hypothesis
0 0* . This completes the proof. ❑

Proof (Theorem 2) Consider an f-local adversarial set A c
V, and let R. = V \ A. We study two separate cases.
Case 1: Consider a regular agent i E R. such that 1,Ari l <

(2f + 1). Based on condition (i) of the theorem, we claim
that i E s(01, 02), for every pair 01,02 E O. We prove this
claim via contradiction. To do so, suppose there exists a pair
01,02 E 0, such that iE V\S(ei, 02). As IN; < (2f + 1),
the set {i} is clearly not (2f + 1)-reachable. Thus, g is not
strongly (2f +1)-robust w.r.t. the source set S(01, 02), a fact
that contradicts condition (i) of the theorem. Thus, we have
established that for networks satisfying condition (i) of the
theorem, regular agents with fewer than (2f + 1) neighbors
can distinguish between every pair of hypotheses. Lemma 1
then implies that such agents can discern the true state of
the world 0* by simply running the local Bayesian estimator
(2), and updating their actual beliefs via (5).

Case 2: We now focus only on regular agents i satisfying
IN; > (2f + 1). For this case, the structure of the proof
mirrors that of Theorem 1; we thus only elaborate on details
that are specific to tackling the aspect of adversarial agents. A
key property of the proposed LFRHE algorithm that will be
used throughout the proof is as follows. For any i E R., and
any 0 E CI, the filtering operation of the LFRHE algorithm
ensures that at each time-step t E N, we have:

t(0) E Conv(k4t),Vj E .A4t, (19)

where

14t { (0) : j E (20)

and Conv(14t) is used to denote the convex hull formed by
the points in the set kIP,9„ t. In words, any neighboring belief
(on a particular hypothesis) that agent i uses in the update
rule (4) lies in the convex hull of the actual beliefs of its
regular neighbors (on that particular hypothesis). To see why
(19) is true, partition the neighbor set Ari of a regular agent
into three sets Uft, .A/r,,t, and J2'9t as follows. Sets Uft and
Jtet are each of cardinality f , and contain neighbors of agent
i that transmit the highest f and the lowest f actual beliefs
respectively, on the hypothesis 0, to agent i at time-step t.
The set .A/1' t contains the remaining neighbors of agent i,
and is non-empty at every time-step since lAri l > (2f + 1).
If .A4?,t n A = 0, then (19) holds trivially. Thus, consider
the case when there are certain adversaries in the set .W:0
i.e., ./1/1 t 11 A 0 O. Given the f-locality of the adversarial
model, and the nature of the filtering operation in the LFRHE
algorithm, we infer that for each j E .A4 t, there exist regular
agents u, v E Ni fl R., such that u E /Aft, v E Jt9t, and

ttv,t(0) < tui,t(6) < Ati,t(0). This establishes our claim
regarding equation (19).

With the above property in hand, our goal will be to now
establish each of the two steps in the proof of Theorem 1.
To this end, let 52 C S2 denote the set of sample paths for
which the same set of events as in Theorem 1 occur, with the

exception that such events occur only for the regular agent
set R. Based on condition (ii) of the theorem, and Lemma
1, we infer that C2 has measure 1. Thus, as in Theorem 1,
fix a sample path w E 12, and pick c > 0. Define yl =

rt,o(0*), pick a small number 6 > 0 satisfying 6 <
and observe that for each agent i E R., there exists ti (6),

such that for all t > ti(6), (0*) > yl - 6 > 0. Define

6.(S) maxiER ti(6) and -y2 A miniER { (b)(0*)}. As
before, we claim 72 > 0. To establish this claim, we need
to answer the following question: Can an adversarial agent
cause its out-neighbors to set their actual beliefs on 0* to be
0 by setting its own actual belief on 0* to be 0? We argue
that this is impossible under the LFRHE algorithm. By way
of contradiction, suppose there exists a time-step t satisfying:

t = inf{t E N : E R. with iti,t(O*) = 0}. (21)

In words, t represents the first time-step when some regular
agent i sets its actual belief on the true hypothesis to be
zero. Clearly, t 0 based on condition (ii) of the theorem.
Suppose t is some positive integer, and focus on how agent i
updates iti,f (r) based on (4). Following similar arguments
as in the proof of Theorem 1, we know that vi,t(O*) >
0, Vt E N, Vi E R. At the same time, every belief featuring
in the set tIfr

'
f_i (as defined in equation (20)) is strictly

positive based on the way t is defined. In light of the above
arguments, and based on (19), (20), we infer:

min{ min fitj,F-1(0*)1,7ri.,f(O*)} > 0. (22)

jEThus, based on(4m;, *f-1we must have iti,f(0*) > 0, yielding the
desired contradiction. With ri - 6, -y2} > 0, one
can easily verify the following:

Pi,t(O*) Vt > tl (8), Vi E R. (23)

In particular, (23) follows by noting that for each i E
(0741(6)+1(0*) > 77, (ii) each belief featuring in the set
kIejf1(5) is lower bounded by (iii) leveraging (19), (20),
and (iv) by using a similar string of arguments as those used
to arrive at (11). This completes Step 1.
To proceed with Step 2, given an c > 0, pick a small
> 0 such that E < cl. Fix a hypothesis 0 0* ,

let q = diam(g) + 2, and note that based on Lemma 1, for
each i E 80, 0'1 n R., there exists ti(0) such that for all
t > 7ri,t(0) < O. Define

f2(0) max-VI (6) , 
iES(61,0* 
m {ti(0)}}.ax 

)nR.

For any agent i E S (0 , n R., observe that

min{ min { Aj,f2(9)(0*)},7ri,f2(9)+1(0*)/ > r/. (25)
icm,e.,f2(6)

Combining the above with a similar line of arguments as
used to arrive at (13), we obtain:

iti,t (0) < (q-1) , Vt > t2 (0) + 1, Vi E (0 , 0* ) n R. (26)

If V \ (0 , 0*) is empty, then we are done. Else, define

49,O*)
E {V \S(0,0*)} : n s(0,0*)l > (2f + 1)f.

(27)

(24)



Whenever V \ 8(0, 0*) is non-empty, we claim that Lr'0*)
(as defined above) is also non-empty based on condition (i)
of the theorem. To see this, note that if LP' ) is empty, then
C = V \S(B, 0*) is not (2f + 1)-reachable, violating the fact
that g is strongly (2f + 1)-robust w.r.t. 8(0, 0*). We claim

min itjh(e)±1(0) < €(q 1), Vi E Lr'e*) n 7Z. (28)
3EM6:,I2 (0)+1

To verify the above claim, pick any agent i E 49,0*) n
7Z. When I Mq n {S(0,0*) n 7Z}1 > 0, the claim
follows immediately based on (26). Consider the case when

,
1.A/: (0)±1 n {so , 0*) n7Z}1 = 0. Since i e _61,61*) 

it has
at least (2f + 1) neighbors in (0 , 0*), out of which at least
f + 1 are regular based on the f-locality of the adversarial
model. Since the set :7i0t2 (0)+1 has cardinality f , it must then

be that 111.16,)t2(0)+1n{S(0,0*)n/Z}1 > 0. Let u E tii96(9)+1 n
{S(0, EP') n 7Z}. Based on the way A/16,)f2(0)±1 is defined, it

must be that iti,6(9)+1(0) < Au,E2(9)+1(0) < e(q-1), Vj E

ivt 14t2(9) +1 , where the last inequality follows from (26). This
establishes our claim regarding (28). Consider the update of

, t2(9)+2 (0) based on (4). In light of the above arguments,
the numerator of the fraction on the RHS of (4) is upper-
bounded by e(q-1), while the denominator is lower-bounded
by 9/. This leads to the following conclusion:

14,t(0) < e(q-2), Vt > t2 (9) + 2, Vi E Lr'o*) n 7Z. (29)

With LiT'e*) A s(B,e-), we recursively define the sets
461'°*) , 1 < r < diam(g) as follows:

rs,o,(9*) {i E \ fur-01 d,B*)} n furc-(1). 1,0*
L )11 > (2f +1)1.

(30)
We complete the proof by inducting on r. To this end,
suppose the following holds for all 0 < r < diam(g) — 1:

Pi,t(0) < e(q—(r+l)), Vt > (0) + (r + 1), Vi E 4"*) n 7Z.
(31)

The claim extends to the case when r = diam(g) by noting
otati) (g) wediaom(g)-1 49,19*)} isthat (i) 4 is non-empty if V\

non-empty (based on condition (i) of the theorem), (ii) any

agent i E ed6z'97:?(g) nR, has at least (2f +1) neighbors in the

set U
diam(g)-1 09,0*)
=0 Le of which at least f + 1 are regular

(based on the f-locality of the adversarial model), and (iii)
using the induction hypothesis and arguments similar to those
used for arriving at (29). Finally, note that the manner in
which the sets 4-0,0*) are constructed ensures that all the
agents in R. are covered. The rest of the proof is identical to
that of Theorem 1. ❑

VI. CONCLUSION

In this paper, we developed a novel distributed learning
rule and established its consistency under minimal require-
ments on the information structures of the agents, and the
communication graph. In particular, our analysis revealed
that the commonly made assumption of strong-connectivity
can be relaxed. We then showed that the proposed learning

rule can be easily and efficiently modified to account for the
presence of misbehaving agents in the network.

Ongoing work involves performing a detailed convergence
rate analysis to see how such rates compare with those
existing in literature. Extensions to time-varying graphs are
also of interest.
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