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3 Scope of Cybersecurity

(Ambitious) Goal: eliminate surprise from our computers

• It is a large field, spanning the whole computer system space: from subtle software / hardware bugs
to the motivation of cyber criminals to unintended radiation from physical devices

• Luckily, in order to be useful these systems are necessarily engineered to reduce surprise



4 Past (Surprising) Events

• January 2010 Operation Aurora
O A series of advanced attacks first reported by Google and aimed at dozens of American companies

o These attacks took advantage of previously unknown vulnerabilities in Internet Explorer and both exfiltrated
intellectual property and accessed email of targeted users

• April 2011 Amazon Outage

O A configuration error during an upgrade disconnected a large number of storage machines

o Once the error was fixed the storage systems automatically tried to replicate, causing a re-mirroring storm,
thread starvation, and a large system failure

• April 2014 Heartbleed
O A vulnerability in the OpenSSL library was discovered allowing for arbitrary remote memory to be read,
including private keys

o This impacted a massive number of servers on the Internet.



5 Purpose of Cybersecurity Models

• Similar to cybersecurity: eliminate cyber surprise (using models!)

• We are asked to determine:
o How a network or system design change might help or hurt (performance, security, usability)

o How well a network can withstand or protect against an attack

o Whether a new product will make a set of systems "more secure"

o What an optimal deployment or design of a system change might be

• Some additional uses:
o Help system developers prototype as they build

o Help train individuals or teams

o Dynamically explore a system with open-ended research questions



6 Differential Equation/Agent-based/Game Theoretic Models

• Critically, these tend to require a thorough understanding of assumptions and important parts of
the system
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7 Emulation-based Models

• We model computers using computers; the line between the "real world" and a "model" is blurry
0 A "real world" production virtual machine is a "moder element after being copied

• Emulation-based models ("Emulytics" at Sandia) take advantage of this blurry line by building
models that consist mostly of virtual or physical machines running software pulled from the real
world

• This approach can be augmented with simulation at a packet level or with the use of another (non-
emulated) model

•



8 Model Assumptions / Parameters

• Numerous assumptions — known/unknown, implicit/explicit
o For every device in the network (from computers to network cables):

1.

2.

3.

4.

The operating system or firmware, from the version to every specific configuration option in every running service

The hardware the device is running on, all the way from rough specifications (amount of memory, speed of
processors) down to the specific motherboard, all of the integrated circuits on it, and their initial RAM states

The software running on top of the system and all of its options and compilation / configuration settings

The users' interactions with the device

o Networks can have thousands of devices in them

o Model-specific software, for example a tool that mimics a user or a change that artificially speeds up a
download to save time

• Unlike other models, a single bit change in many cases can cause a state change



9 Running an Emulytics Model

• The models are run (at clock rate) on computer systems

• We use virtualization platforms and numerous physical computers, each with their own complete set
of assumptions and parameters

• A model may have significantly different output if it is oversubscribing the underlying hardware,
experiences contention with other devices, or simply is not scheduled well across the physical
cluster

• This adds a degree of non-determinism that does not seem to exist with many other models
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11 Emulation-based Modeling Tool: Firewheel

• A platform developed at Sandia that eases the process of building, running, and studying models

• DoD research organization had a need for a very large-scale virtual testbed of 100K+ virtual
machines to emulate an Internet-like environment and perform large-scale analytics

• Original requirements
o Scale up to 100K+ end points running Windows & Linux

o Fast set up and boot time

O Perform large-scale data analytics

• No national testbed met these requirements

• Firewheel has since been used on numerous projects for a variety of
customers

FIREWHEEL



12 Emulytics Process

• Question / goal driven
• A model is created to answer a specific question

• From the goal, topologies and applications are
chosen or created

• The model is then deployed as virtual machines,
networks, and software
• This process will likely take many iterations before the

deployment is close to what is desired

• Instrumentation is added

• The collected data is used to answer the question or
refine the model
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Example Topology:
1 3 Energy Sciences Network •



Example Topology:
14 Small Notional Topology

ACME Corporation Network
4 Physical buildings: 3, 2, 7, 10
Building 7: Internet access / IT staff
Building 10: Data center
Building 2: Staff, with critical staff in basement
Building 3: Executive team

monitor.evil.com
eth0: 10.250.0.2

building3.acme.com
eth0: 10.30.4.2
ethl: 10.30.10.1 ifig

• • •

building2.acme.com
eth0: 10.30.5.2
ethl: 10.30.7.1
eth2: 10.30.20.1

building2-basement.acme.com
eth0: 10.30.7.2
ethl: 10.30.21.1

gateway.acme.com
eth0: 10.250.0.1
ethl: 10.30.1.1

• •

firewall.acme.com
eth0: 10.30.1.2
ethl: 10.30.2.1

building7.acme.com
eth0: 10.30.2.2
ethl: 10.30.4.1
eth2: 10.30.5.1
eth3: 10.30.6.1

building10.acme.com
eth0: 10.30.6.2
ethl: 10.30.30.1

11
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Example Topology:
1 5 Large AS and its Exit Routers

97.249.232.221.broad.wh.hb.dynamic.1.63data.com.cn (AS4134)



Example Topology:
16 Real-world Tor Network
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17 High-Level Firewheel Components

Graph
• Graph Server (API)
• Scheduling
• Graph Analytics
• Plugins - 100s

Agents
• Agent Server (pluggable modules)
• Agent Development environments
• Agents - 100s

Topologies and Applications
• Windows services + domains
• Tor and Botnets
• Content Delivery Networks
• Programmatically generated

• Etc.
topologies

Core
• Network Virtualization
• Virtual Machine Launching /
Control

• CLI - physical cluster
management

Analytics
• Integrated Logstash / Kibana
support

• NetFlow analysis, Windows
events, BIND statistics, CPU /
mem loads
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18 Example Physical Testbed
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19 Architecture Efficiency

• Very high density of VMs per core, fast set up and near linear boot time
° 750 Linux VMs per 16 physical core on Dell C6220

0 15 minutes to boot 72K Ubuntu 12.04 VMs with full network convergence
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21 Case Study I : DNS Amplification Post-Event Analysis •



22 M iti gat ions

• After successfully mitigating the attack, some questions remained:

o Can the mitigations protect against larger attacks?

o Which mitigations had the most impact?

o How do the mitigations affect other daily operations?

o How might similar attacks impact surrounding networks?

• Mitigation 1: Disable query logging

• Mitigation 2: Enable rate-limiting

• Mitigation 3: Isolate the DNS servers in the topology

•



23 Mitigation Impact
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24 What About Larger Attacks?
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Impact of Individual Mitigations

200 400 600
Time w/ Linearly Increasing Attack (sec)

Significantly
worse with
query logging
disabled!



2 6 Experiment Repeatability
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27 Discovery!

30,000
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28 . Case Study 2: 12P Study

• I2P (Invisible Internet Project) is a peer-to-peer overlay network designed to provide anonymous
hosting

• Malware authors have moved communication servers into it—collaborating with Manos
Antonakakis at Georgia Tech, we want to learn how to stop such malware

• I2P is a system defined by the currently running code and previously no system-wide non-trivial
questions could be answered

r•_

■



29 Example 12P Model Goals

1. Suppose one can temporarily turn off I2P traffic to an
autonomous system on the Internet. How much would
this have to happen to increase the tunnel ratios?

2. The I2P developers may be willing to update the code to
ban the malware. Will all users who update isolate
themselves from I2P?

3. It appears that a poisoned router entry could break I2P.
(Testing this in the model showed that it is not the case.)

4. Given a small testing infrastructure, can we perform a
larger population estimation by varying unknown model
parameters?

• • • f Kibana 3 - I2P Tunnels

a 10.0.3.14/lebenaliklashboardielasticsearch/12P Tunnels

Most visited - Getting Started

C ' Search

EVENTS OVER 11ME

View r &cm Oul • eagentrOunnels. (111671) ouunt per Em I (18871 hits)
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me2p 203 Q 0 i5nt 202 Q 0 plra 926 Q 0

uzms 190 Q 0 95142 201 Q 0 z9g 874 Q 0
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sk 184 Q 0 me2p 163 Q 0 lov4 842 Q 0

g2oe 174 Q e xupi 162 Q 0 yotj 836 C1 0

law 172 Q 0 Oznv 157 Q e xupi 805 4 e

i5nt 160 Q 0 bbug 150 Q 0 men 722 Q 0

kka2 151 Q 0 lov4 147 Q 0 15nt 722 Q 0

voly 142 Q 0 g7u8 145 Q 0 zoxf 715 Q 0

•



30 12P Model

• I2P software is programmatically installed on
Ubuntu 14.04 desktop clients

• I2P is bootstrapped (using our own keys)

• Everything is instrumented to report internal
behavior

• Underlying network topology (emulated part
representing the Internet) is built using histograms
pulled from research papers

• User behavior: an infinite loop browsing one
website and other simple activities

stii!...

.. .

•



31 12P Model Results and Considerations

• We have answered several questions at this point with the model, including identifying a likely root
cause for a network anomaly last year and establishing population estimates

• There are numerous assumptions in this model (as with any model) and care needs to be taken to
ensure that any conclusions drawn are not simply the result of a model-specific artifact
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33 Staghorn: System-wide Snapshots

With emulation, the modeling system competes with the model for CPU time

• We built a way to "stop time" within a model, opening the door to the larger world of offline model
analysis

• The key contributions of this work are:
• A full-system snapshot and restore capability which preserves network and I/0 state

• A network modification system that allows for modification of Ethernet frame contents and delivery, or the
introduction and removal of frames, during a snapshot

o The evaluation of this capability on real-world use-cases

■



34 Example Use Cases

Vulnerability analysis
Manual or semi-automated state space exploration

o Fuzzing at the system level

• Debugging systems
o Stop the entire system on a failure, allowing for better fault isolation

o Manual debugging can be drastically improved with periodic system checkpoints

• Optimizing tests
Test execution paths that share a common prefix can only diverge when necessary

• Experimental repeatability
o The non-determinism at different stages in a model can be measured

• Training
• Checkpoints can be made, and when a user corrupts state in a training environment it can be reset



35 Fuzzing Concept/Approach

Fork execution
by taking snapshot
and returning to it

Greedily choose
message modification
with largest metric to take

Evaluate metric after
different message
modifications

After many greedy
message choices a
bug is found



36 Fuzzing a Packet

0V
Open vSwitch

Y



37 Debugging Systems

1. Set breakpoint

Install Staghorn Trigger

3. Staghorn will wait until the
breakpoint is hit to snapshot the
system.

$ jdb -attach 198.128.0.1:8888
Set uncaught java.lang.Throwable
Set deferred uncaught java.lang.Throwable
Initializing jdb
stop in Example.math

Set breakpoint Example.math

Trigger

Offset : 75

Data : 4064020000000102

Set breakpoint Example.math

Breakpoint hit: 9thread=main",

main[i]

Example.math(), line=5 bci=0

•



38 Staghorn Timing Results
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39 Staghorn Architecture •
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41 Topology Sensitivity
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42 Topolog
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43 Topology Scale and Non-Determinism Sensitivity
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44 Verification and Validation

• Identified problems: massive number of parameters and
difficult metrics / quantities of interest

• We are building small laboratory models of key
components — hierarchical may work

• Great care needs to be taken!
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45 Verification and Validation

• Identified problems: massive number of parameters and
difficult metrics / quantities of interest

• We are building small laboratory models of key
components — hierarchical may work

• Great care needs to be taken!
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46 Possible Validation Distinguisher

As a general validation metric, use a Turing machine as a distinguisher between real and emulated

• D is a probabilistic Turing machine distinguisher, E is an oracle for the emulator, and R is an oracle
for the real world

• Difficulty is in choosing the environment for D (the probability space and allowed accesses to the
oracles)

Adv(D) = l Pr [D (E) = 1] — Pr [D (R) = 1



47 Validation Process

1. Understand the model's purpose

2. Prioritize important model features

Select observables of the model to compare, known as Quantities of Interest (QoI)

4. Identify the model parameters and value ranges

5. Select a real world referent to which to compare your model

6. Design validation experiments

7. Perform the validation experiments and collect data

8. Compare the QoIs using a pre-defined validation metric

9. Compare the metric results to validity thresholds

10. Collect a description of the full validation process and the metric results into a credibility case that can
be used to judge whether a model is suitab e for its purpose

■



48 Conclusion

• We are at a point where emulation-based models of computer systems are scalable and useful

• Our modeling tools and environments are currently being used to help study real systems

• Great care needs to be taken in designing and running experiments and important results that are
trusted need to come hand-in-hand with a validation study

• Questions?


