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Introduction

e \Want to study defects in gallium nitride (GaN) using plane-wave density
functional theory (DFT) and projector augmented wave data sets (PAWSs)

e However, for the large system sizes required for accurate defect studies, there is
a strong need to reduce computational expense of the DFT calculations

e |f guantum molecular dynamics (QMD) studies are required, existing Ga PAWSs
are too slow because of supercell sizes and time steps required

e Objective: use optimization to tune parameters of a new 3-electron Ga PAW,
evaluating scattering properties and zb-GaN lattice parameter for each PAW.
Then, evaluate accuracy and speedup of new PAW in defect calculations in GaN
to see if it speeds up the calculations without adversely affecting the results

Methods: PAW Optimizations
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To get defect transition levels:
e remove Ga atom from unit cell
e relax structure
e calculate total energy
e repeat relaxation and total
energy calculation for
different charge states (Ga vacancy In
e Calculate transition levels: wurtzite GaN
Eplg—1,q) = E[q — 1] — E[q] — Eguit
where q is charge state and To get band gap and bounds:
Esnhife is usually the valence e Band gap comes from neutral bulk
band edge structure with no defect
e the charge is no longer e The bounds are the energies required
localized on the defect when to add or remove an electron from the
the levels are at the bounds unit cell, which are only equivalent to
(red lines in results) the band edges in an infinite size cell
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Test new PAW accuracy in

defect calculations

e Compare defect transition levels
between new 3-electron PAW and
existing 13-electron

e set -3/-2 levels equal for reference

e -2/-1 levels agree within 30 meV, 3.3
meaning there is good agreement upper bound 23
between the PAWs 307 43 =
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Conclusions

e Generated a 3-electron Ga PAW that reduces computational expense of defect
calculations in GaN by about 40%

e A genetic algorithm can improve optimization results over a parameter sweep
with an order of magnitude fewer iterations

e This optimization process could be applied to other systems where custom PAWSs
would improve accuracy or speed of plane-wave DFT calculations
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