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Context: we are interested in matter at extreme conditions

relevant to fusion and astrophysical plasmas
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Context: we are interested in matter at extreme conditions

relevant to fusion and astrophysical plasmas
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When we say "high-energy-density", we don't mean gasoline
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Context: How do we produce extreme conditions in the
laboratory?

C

Magnetization Laser Compression
heating

SNUs Z machine:
10 MJ 4 10-9s, 100-1000 pm

0.3 - 3 keV, 0.01 - 1g/cc
Fusion, Opacity, Rad. effects

LLNUs NIF:
2 MJ 4 10-19s, 10-100 pm
0.3 - 3 keV, 0.01 - 1g/cc

Fusion, Opacity, Rad. effects
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LCLS/ European XFEL:
2 mJ 4 10-13s, 1µm

10eV, 1g/cc
Fundamental material

We compress energy in space and time using pulsed power, lasers, or undulators



What's so difficult about modeling extreme conditions?

• HED plasmas are (usually) not well described by classical plasma models
• Partial ionization complicates simple ion + electron pictures
• Degeneracy effects invalidate classical statistics
• Density effects distort quantum orbitals
• Ions can be strongly coupled
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• HED plasmas are (almost) never well described by solid-state models
• Even modest temperatures can open enormous state space
• Simplifications of ionic and electronic behavior are suspect

• Rigorous and reliable models exist, but...
• Quantum Molecular Dynamics (QMD)
• Time-dependent Density Functional Theory (TD-DFT)
• Computationally expensive and difficult to extend

to high temperatures, low densities, and complex ions
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Central question: What happens to material when you
squish it very hard and/or heat it quite a lot?

Experiments/Observables

Measurements from small, short-lived
lab plasmas and large, distant
astrophysical objects are inherently
challenging

Observables (yields, images, spectra)
can be difficult to interpret and may
require both adequate material models
and complex simulations

Simulations
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"Magneto-radiation-hydrodynamic"
simulations are used to design

experiments and help interpret data from
laboratory and astrophysical plasmas

Reliable simulations themselves require
extensive input from adequate material

models (EOS, transport, opacity)

Additional questions:
How can we tell if our models are right?
How important is model consistency?



Our central goal: Develop a unified, tractable, and consistent
model for matter in extreme conditions

Multi-configuration
atomic structure

Line broadening,
opacities

Taisuke Nagayama
01683

cf. NLTE

X-ray
spectra

Thomas Gomez
01684

Core model:
quantum

average atom +
ion correlations

HED/ICF
Simulations

HED/ICF
Experiments

EOS, viscosity,
diffusion

c(co), cs(co),
Kth, aE/ax

cf. TD-DFT

X-ray
scattering
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Attila Cangi
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Andrew Baczewski
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History: Thomas-Fermi fluid models developed in the 1920s Sandia
National

still inform some present-day simulations 
Laboratories

Fluid "Self-consistent field" models capture a lot of essential HED physics on the cheap!

o

o
0 0.5

Example: Thomas-Fermi SCF model

Solid Cu at T = 100 eV

1.5 2 2.5

An initial guess is made for the
electrostatic potential V(r) in the ion
sphere. This potential is used to
determine an electron density
distribution p(r), which is in turn
used to generate a new potential.

The procedure is iterated until self-
consistent V(r) and p(r) are
obtained, giving also 4 and ,u.

Ro =2.67

But they neglect electronic shell structure and treat other ions as a uniform "jellium"



Our model builds on that history:
Fully quantum, semi-relativistic electrons for both the atom...

Core model:
quantum

average atom +
ion correlationsSolid-density iron, 10 eV

-2.0

-4.0

-6 0

0

Converging potential:

V(r) —f Pe(r) + \kr.ir_rf i

4 n 8 10 12
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Bound and free atomic
wavefunctions are calculated in
a self-consistent potential
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Electron densities:

bound
continuum

0 2
radius (atomic units)

Nc\
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13vvs
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Liberman. Phys Rev. B 20, 4981 (1981); Wilson, Sonnad, Sterne & Isaacs JOSRT 99, 658 (2006)
\ 



Our model builds on that history:
Fully quantum, semi-relativistic electrons for both the atom
and the external system

Solid-density iron, 10 eV

4.0

2.0

- 0.0

-2.0

-4.0

-6.0

0 2

Converging potentials

12
radius (atomic U n i ts)

Core model:
quantum

average atom +
ion correlations

40
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The external system defines a
neutral pseudo-atom (NPA)
that extends beyond the
Wigner-Seitz cell

35
P PElectron densities: pNPA = atomic external

bound pscreening = pNPA _ pion

screening
external

10

5

0

0
radi Ll s (atomic units)

1 2 4

Starrett & Saumon, HEDP 10, 35 (2014),



...which extends the model's self-consistency to ions:

Solid-density iron, 10 eV
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0.0

0 2

Converging g(r)
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rachus (atomic units)

Core model:
quantum

average atom +
ion correlations
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The screening electron density
determines the ion-ion
interaction potential:

47...2

01.1(k) = 
k2 

— (k)Cie(k)

This potential constrains the
ion distribution through the
quantum Ornstein-Zernicke
equations

Starrett & Saumon, HEDP 10, 35 (2014)



This is our fully self-consistent core model,
which is sensitive to a limited number of constraints
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Self-consistent
Vei(r), T(r), p(r),

Vext(r). Pext(r),
Pion(r)

Observable and
constitutive
properties

- Spherical
- semi-relativistic
+ orthonormal T(r)
+ runtime — 3 minutes



These constraints impact Equations of State and all other
model-derived properties while preserving self-consistency
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I EOS iscosity,
diffusion

c
c

3 0 3 2 3 4 3 6 3 8 4 0 4 2

P/Po

J. Gaffney, S. Hu et al.

./

44

LLE EOS code comparison



Screening from the core model drives PAMD simulations,
which inform EOS & provide ionic transport coefficients
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Starrett PAMD
Nagayama PAMD
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T. Nagayama

Core model:
quantum

average atom +
ion correlations
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EOS, viscosity, 1
diffusion
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The core-model wave functions produce optical properties:
conductivities, dielectric functions, & opacities

o-1(ko =

Line broadening,
opacities a(w)
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Core model:
quantum
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ion correlations
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X-ray
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Thermal conductivities are derived from electrical
conductivities 6(0) with additional electron-electron scattering

Core model:
quantum

average atom +
ion correlations

10 g/cc hydrogen

1013 .

2 QLMD

/
/./ 

2
• Core rnodel0 0

-,--_._ 1011 11+11

il

-4/ 

1?
a) a)

-.5
'--' 109

___,..----ir LE-Fce
....----

1 10 100 1000
T (eV)

M. Desjarlais

r "16(01, c(w),

L 
Kth 13E/ax
.— :11

100

—A—hernuze
rnuze-k

— e —rnuze-s

—A— aan-KI
—A—km ci
—A— ks d

--A-- sch-nd
—A—tfrnd_s
—A— pamcl
—e—aahnc

eff
o pimcl

qe

Sandia
National
Laboratories

T (eV)

P. Grabowski, A. Baczewski et al.
SNL transport code comparison workshop



The dielectric function and electron density inform stopping
powers (dE/dx) relevant to self-heating in fusion plasmas
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Wana et al.. Pints Plas 5. 2977 (1998): Maavar et al.. C. Plas Phys. 56 459 (2016),lk 1
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The dielectric function is also related to X-ray scattering,
which is used as a diagnostic for laboratory plasmas

1

0.8

0.6

0.4

F 1 
S(co) a Im

E(co)

Core model:
quantum

average atom +
ion correlations

solid Fe, 20 eV, 130 degree scattering (k = 3.4)

o_

rn

-a
rn

rn

100
energy (eV)

— TD-DFT

— core model

----- Form factor -F RP.A ••(51,

300

I X-ray
scattering

Kth, 3E/ax

Sandia
National
Laboratories

X-ray Thomson Scattering in Warm Dense Matter without the
,...Chihara Decomposition

A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen, and R. J. Magyar
Phys. Rev. Lett. 116, 115004 — Published 18 March 2016

TVV

Johnson et al, PRE 86, 036410 (2012); Chihara, J. Phi-is. Cond. Matt. 12, 231 (2000)



The optical properties that inform transport and scattering
also provide opacities but they're not very good

Core model:
quantum

average atom +
ion correlations
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energy (eV)
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*Ialesias and Hansen. An. J 835. 284 (2017): **Bailey et al. Nature 517, 56 (2015) •



The opacities can be significantly improved by
splitting the average atom into detailed configurations

Core model:

I Multi-configuration
atomic structure

Line broadening,n
opacities a(w) 

X-ray
spectra
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Cowan, Theory of Atomic Structure and Spectra Lao, Astron & Astro 281, 460 L1994.1



Opacities will be further refined using self-consistent line
broadening from core-model PAMD & collision models

Line broadening,
opacitres
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We are working to build a self-consistent model of material at extreme conditions with:

• Constitutive properties adequate for use in simulations
4 Enforced consistency can improve sensitivity studies & increase constraints

• Observable predictions adequate for comparison with experiment
4 Enforced consistency means that if part of this model is wrong,

the whole thing is wrong — and its wrongness should be detectable

For complex systems, internally consistent models
that can be falsified by comparison to detailed data
have more epistemic value than tunable models

made to fit integrated data
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The core model is sensitive to the choice of exchange potential
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The core model is sensitive to whether the screening density
includes the pressure-ionized "scars" of bound states
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Examining the full dielectric function indicates a missing piece
in the standard Chihara decomposition
Chihara decomposition:

= 1 Mk) + q(k)I2 Sia,e0

elastio

2,5„(k,w)+ Sbf(k,(0 + Sbb (k,

free-free bound-free bound-botrid
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The bound-bound features in

lm{l/Ebb(w)} are reminiscent of
sharp bound-free features
previously noted by Johnson et al.
and Souza et al.*
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*Johnson et al, PRE 86, 036410 (2012); Souza, Starrett et al., PRE 89, 023108 (2015)



Both the core model and TD-DFT capture

bound-bound scattering features in S(co, k)
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Core model:
quantum While S(co,0) lm{1/E(e),0)}

average atom + roughly describes edges and

ion correlations line, a more general S(co,k)
can be obtained directly
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A persistent puzzle: isolated line broadening for

multi-electron atoms

• Efforts to model simple multi-electron
atoms (low-Z Li-like ions) show a
disturbing disagreement with
experiment

• These are not exotic conditions
(Te 15eV; nez2x1018 e/cm3)

• This indicates that there might be
some missing physics or something
that the community is doing
incorrectly

• In order to model more complex
atoms, we must resolve this
discrepancy with simple 3-electron
atoms
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Interaction Between Radiator and Plasma

• We need to use a complete Coulomb
interaction (rather than the simpler
dipole approximation)

• We also need to include the effects
of the anti-symmetry between
atomic and plasma electrons

• Approximations about wavefunctions
can neglect some exchange
interactions

• These neglected interactions have
large consequences
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*Preliminary Result for B III 2s-2p line

0  •• ,,

2063.5

Exchange With Valence Electron Only
Incluing Nuclear Exchange

2064 2064.5

A (À)

Te = 10.6cV
ne = 1.8 x 1018e/cm3

OM • •

2065 2065.5

More work is needed to complete this project, but we have identified
some physics that requires careful attention because it has a
significant effect on line shapes



These calculations (AA-LDA) described Zylstra's recent

measurements of 14 MeV proton stopping reasonably well

Cold Warm
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FIG. 4 (color online). Downshift (AE) for cold (a) and warm (b)
shots compared to theory. The solid points are data (denoted by
shot number), and theories are hollow points. The uncertainties in
theoretical calculations are due to uncertainties in pL and plasma
conditions.

Mean ionization potential can be
calculated simply by averaging Ebinding
EFermi for all electrons in the Average Atom
calculation

The downshift of 14 MeV protons is
determined by integrating
calculated dE/dx over measured
path length
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FIG. 5 (color online). Mean ionization potential (7) inferred
from the stopping-power data in the cold (a) and warm (b) cases

compared to the Andersen-Ziegler empirical fits (1Az), the ideal
plasma case (heop,), and electronic structure theory.
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From Zylstra et al., Phys Rev Lett 114, 215002 (2015)



Observables in extreme WDM:
absorption edges and fluorescence lines
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Calculations (dashed lines) anchored to the
K-edge of ambient data (solid gray) show
good agreement with line and edge shifts
and broadening due from a warm
compressed MagLIF liner backlit by
stagnation emission (solid blue) with T — 10
eV and ne 2x1024 e/cc.

This agreement indicates that self-
consistent DFT models describe electronic
structure in extreme conditions with better
fidelity than ad-hoc models of density
effects.

*Hansen et al, submitted



Scattering calculations are also fully constrained
10 eV, 5 g/cc, Zfree = 2.6, ZE>o = 2.9
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TD Most components of the scattering signal
are calculated using fully self-consistent
quantities1,2 (free-free uses RPA)
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S(k,w) = Ifi(k)+ q(k)12Sii(k,w)-E ZS„(k,o))+ Sbf(k,co)
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We find good agreement of the self-consistent average-
atom model with time-dependent density functional theory

— A. Baczewski et al., PRL 116, 115004 (2016).
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solid Fe, 20 eV, 130 degree scattering
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1. W.R. Johnson et al, PRE 86, 036410 (2012) 2. D. Souza, C. Starrett et al., PRE 89, 023108 (2014)



Electrons: Quantum mechanical average atom Sandia
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All-electron, fully quantum-mechanical* semi-relativistic self-consistent field solver with flexible exchange
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10 eV, 5 g/cc: Z* = 2.6, Zc = 2.9 10 eV, 8 g/cc: Z* = 3.2, Zc = 8.0
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Key ansatz:
Quasi-bound states are averaged
over resonance features in the DOS
and treated just like bound states

This ensures smooth variation of
constitutive & observable properties
under pressure ionization — and
collapses multiple definitions of Z*
into a single value [cf. Murillo et al.,
PRE 87, 063113 (2013)]:

—Qd at peak

—Qd averaged Z* = f C15/(145)DOSideal (Zfree)

10

(ZI3oltz)

(Zasymp)

7-1 1/3 Rws p(Rws) (ZWS)
0 f dsf(µ,$) DOS = Zn - Zb (Zg>0)

= f Pscr dr = Vie(k = 0) (Zscr)

= f dsf(µ,$)(1 -f(µ,$))s312
= 1/3(R3ws/R2max)P(Rmax)

*D. A. Liberman, Phys. Rev. 8 20, 4981 (1979), B.G. Wilson et al, JQSRT 99, 658 (2006)



Ions: Quantum Ornstein-Zernike Sandia
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Self-consistent vii & gii obtained by finding electron density with (ptot) and without (pext) central charge*
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pscr = pPA _ pion

Like Z*, en is not uniquely defined

New ansatz (solid): pion = pb pq-b

Standard (dashed): pion pb

The new ansatz leads to smaller
changes in screening under
pressure ionization and softer g(r)

Combined with smooth changes in
Z*, this leads to smooth variations in
model predictions for both
constitutive properties and
experimental observables

*C. Dharma-Wardana & F. Perrot, Phys. Rev. E 26, 2096 (1982), C. Starrett & D. Saumon, HEDP 10, 35 (2014)


