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Challenges in Soot Modeling

Soot formation & evolution involves many steps

Nucleation, surface reaction, coagulation, oxidation, etc.

Slower evolution than combustion chemistry

Quasi-steady assumption is not adequate
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Challenges in Soot Modeling

& &

Soot formation & evolution involves many steps

Nucleation, surface reaction, coagulation, oxidation, etc.
= Slower evolution than combustion chemistry

= Quasi-steady assumption is not adequate
= Limited success in soot modeling

= 1-3, or more, parameters are carried:

= Soot mass, number density, PAH, etc.
= Ex> 2-equation model:

-

| &
| =
"

|

= 10 s

-

! rm;‘

L - o peron sdes

XLC P
Nucl.) = 54N 4 =822 ,—21100/T
(Nudl.) a RyT €

pN: Number density, pM: Mass concentration 24RoT

1/2
30 (Coag.) = (PSOOTNA> d;/Q(pN)z
p

—— + V- (pulN) = (Nucl.) — (Coag.
gr TV (pul) = (Nucl) = (Coag.) (Surf.) = 11700 (X—]C;I;‘:P ) e 120/T x AREA
0

opM

v + V - (puM) = W,(Nucl.) + (Surf.) — (Oxid.) Xo, P

RyT

XouP

(Oxid.) = <500 TLHAe 20T 4 4 9305 = T1/2> x* AREA

= Each evolution steps contribute as a source
= Coefficients are heavily tuned for fuel and/or configuration
= May allow non-sphere and/or subfilter-PDF: | ° >




Flamelet Turbulent Combustion Models () &

Laboratories
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= Adiabatic models: reactive field is represented by mixture fraction (Z) and
dissipation rate (x) or progress variable

= Tabulated; Cost-effective; Well-studied in many turbulent combustion regimes
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Non-Adiabatic Flamelet Model ) i,
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= Adiabatic models: reactive field is represented by mixture fraction (Z) and

dissipation rate (x) or progress variable

= Tabulated; Cost-effective; Well-studied in many turbulent combustion regimes

= Non-adiabatic approaches add enthalpy defect, or radiative heat loss
= T, orradiation, is important for soot prediction => couple with a better rad. model
= Main flame chemistry: quasi-steady vs. soot & enthalpy: unsteady
= Timescale for soot & enthalpy: O(0.1-1s) => verify unsteadiness of the flamelet
= Temperature variation is limited when only gas-phase radiation is included
= 1ppm of soot reduces T by 100K => let enthalpy defect cover all T-x space

(a) S-shaped curve
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Objectives )

= Develop a fully-quenched, non-adiabatic, dissipation rate-based
unsteady flamelet

= Couple with a discrete ordinate radiation solver for radiation-flame-
soot interaction

= Validate the model on laminar and turbulent sooting flames




Enthalpy Defect & Unsteady Flamelets ()&,
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= |nitially developed for NO prediction as a post-process (Pitsch et al. 1998)
= Later added as an additional flamelet dimension (ihme pitsch 2008)
wy = 4o(T* — Tfo) Zpiai 2°°°
= Moderate enthalpy defect for NO prediction .|
= Tdoes not go down further due to reactant mixing  * 1‘ b b o “
= As Yy increases, effect of the sink term diminishes N \
2300 = 1
= Soot prediction needs to cover all T-x space
= Unsteady radiative losses lead to significant cooling '_;-15003 ’e';t:fagg
= May cross below S-curve middle branch 1100%% :

= Similar approach proposed by Mueller Pitsch 2013
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= Potentially extendable for wall-cooled flame
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Non-Adiabatic Flamelets ) B

= A new heat-loss term is proposed: 6H N XO°H _ y [T(H, Z) — Too]
= T o s il
= Proportional to  for complete cooling 9t~ 20Z? Tiae — Too

= Linear to T for a better off-stoi. coverage & potential wall-cooling capability

=  With the larger sink term, flame cools down to ambient T
= This is ‘cooled product’, not reactants mixing

= Enthalpy defecty is introduced Hoy = H(0) + [H() — H(0)| Z
= vy isthe difference between H and adiabatic H .~

= To use well-developed enthalpy solver
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Unsteady Effect )
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= Normalize by (Tmax-To) to retain the same magnitude of the source

= However, max temperature drops faster below unstable middle branch

= Timescale matches to the estimated enthalpy response delay
= ((0.1-1s) for complete cooling at lower x range
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Tabulation i

= Tabulation of x-based enthalpy defect approach has an advantage
for fire and similar scenarios over progress variable-based
" Progress variable predicts ignition delay, local quenching/re-ignition
= xis orthogonal to y: orthogonal tabulation

= Sub-filter PDF applied to the mixture fraction: a 4D table Z, 22, g, and 7
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Radiation Model )

= Full interaction between radiation and flame is
important for an accurate temperature prediction

= _.which approximated models such as optically thin
assumption do not provide

= Discrete-ordinate radiative transport equation
i +V - (puH) =V - (pDVH) — (4acT* — aG)

ot emission absorption

G = [1(s)d s-VI(s)+al(s)=e

= Both gas and soot contribute on absorption and emission
source to the wave

a = Qgas + Gg00t and € = €gas + €500t

Asoot = (—375000 + 1735T)pM/ psoor x

- 4
€soot = asootaT /71'

= Radiation sources are precomputed in the table

z

= Radiative transport equation is solved for 48 directions




Model Validation - Laminar Flame )

= SIERRA/Fuego was used for model implementation and simulations
= SIERRA: Sandia’s engineering mechanics simulation code suite
® Fuego: low-Ma reacting turbulent flow solver

= Validation study on a laminar flame
= Ethylene coflow sooting jet (Santoro et al. 1983, Smyth 1999)
= Needed a 3D mesh for the radiation solver, ~10000 cells at a symmetric plane
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Laminar Flame Results ) B

= Temperature matches in the downstream
= Enthalpy defect (radiation source) is correctly modeled

= Maximum soot volume fraction agrees well with the experiment
= Soot develops earlier and not fully oxidized

= Conventional model coefficients for ethylene were used - there are better
predictions elsewhere where coefficients & model forms were tuned
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Turbulent Fire Plume )

= Configuration follows the previous study (WSSCI 2017 Fall)

FLAME, a large-scale high-fidelity indoor pool fire/fire plume test facility
Mesh/domain sensitivity was studied on the soot-free methane plume (MaCFP)
Fuel was replaced by ethylene

LES closure: sub-filter kinetic energy one-equation model

A total of 1.3M meshes (smallest cell size=2cm) was used
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Evolution of Enthalpy Defect ) e,

= Scatter plots show O(0.1s) timescale between radiation source and y
= yreaches -1.6E6, approx. 1000K lower Tmax than adiabatic profile
= Plots confirm significant soot contribution to the radiation source
= vy could be positive due to radiation absorption by fuel
= Soot develops at fuel rich condition
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= (Qualitative comparison to an experiment
= Soot measure is available only for methanol blended by 10% toluene

= Qualitative comparison was made for a case with different phase, fuel, slightly
different geometry: sooting location is well captured with O(103) mag. difference
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Conclusion =

= An enthalpy-defect, dissipation rate-based flamelet is developed
for sooting flames

= Transient flamelet-generation allows the flame temperature from adiabatic to
the surrounding temperature

= Not only radiation: potentially suitable for wall-cooling/heating application

= A two-equation soot model is coupled to the non-adiabatic flamelet
approach in laminar/LES context with full discrete ordinate
radiation model

= The model is demonstrated on sooting flames

= Effect of the modeled radiation and enthalpy defect matches well to the
measured temperature

= Soot magnitude is well predicted while oxidation is underpredicted

= Strong interaction between soot evolution and radiation is observed in the
turbulent flame
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Future Works )

Laboratories
= Non-gray radiation model coupled with discrete-ordinate RTE
= Banded approach for now
= Correlated-k
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EEEEEEE— Mixture fraction

Future Works e

= Add a wall cooling effect by..

Using 4-dimensional enthalpy defect flamelet
= Saw limited success; correct T, incorrect absorptivity

Adding another (5th) dimension: varying oxidizer or fuel stream condition
= Memory issue is expected

= Changes of temperature in fuel vaporization or pyrolysis
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