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Microwave Based Lifetime Measurements and Analysis for Detector Materials

* Time-resolved microwave reflection lifetime measurements
* Motivation for IR detectors
* Time-resolved Photoluminescence

* Microwave measurements and dark current

* Things you can do with lifetime measurements

* Auger, Radiative, SRH extraction and dark current

Wafer mapping for growth problems

Predicting device performance from carrier lifetime

In situ radiation studies

Vertical mobility

* New concepts

* Non-contact absorption coefficient
* Top hat beam & Size limits
* Doppler



| Relevant for IR Detectors — nBn

nBn Photodetector
S. Maimon et al., Appl. Phys. Lett. 89, 151109 (2006)
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4 | Microwave Reflectance

Microwave |:>
Oscillator
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Sample I

Pulsed Pump
Laser

Reflected Signal

* Pump Pulse excites charge carriers in IR absorber layer,
altering the conductivity of the sample

.0x10” 1.0x10° 1.5x10° 2.0x10°
* Microwaves reflected from sample surface detect this Time
change and monitor their decay back to equilibrium (i.e. the ... Equation:
carrier lifetime) R = A+ B(ng + An) + C,(ny + An)?

* Approximate 2 ns time resolution, fast acquisition/high
throughput, and extremely sensitive




5 I Microwave Reflectance
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Lifetime and Dark Current
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/Pure diffusion current
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Temperature (K)

n-type doping reduced dark current

Dark Diffusion Current

Tc = minority carrier lifetime
n;= intrinsic carrier density
N, = doping level

L, = absorber width

Lifetime is a good
indicator of the dark

current!

Olson et al. Appl. Phys. Lett. 107, 183504 (2015)



Lifetime and Dark Current

MWIR InAsSb alloy nBn
Temperature (K)
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Lifetime ~400 ns, N, = 7E15 cm™3
Intentionally deplete to turn G-R on

Dark Diffusion Current

Tc = minority carrier lifetime
n;= intrinsic carrier density
N, = doping level

L, = absorber width

Lifetime is a good
indicator of the dark
current!

Olson et al. Appl. Phys. Lett. 107, 183504 (2015)
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Microwave Based Lifetime Measurements and Analysis for Detector Materials

* Time-resolved microwave reflection lifetime measurements
* Motivation for IR detectors
* Time-resolved Photoluminescence

* Microwave measurements and dark current

¢ Things you can do with lifetime measurements

* Auger, Radiative, SRH extraction and dark current

Wafer mapping for growth problems

Predicting device performance from carrier lifetime

In situ radiation studies

Vertical mobility

* New concepts

* Non-contact absorption coefficient
* Top hat beam & Size limits
* Doppler



Microwave Reflectance: More advanced, Auger, Radiative, SRH

Peak Signal (S) vs. initial optically
generated carrier densitv

Time-resolved Signal (S) as a
function of time
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More advanced, Auger, Radiative, SRH

Shockley Read Hall
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Minority Carrier Lifetime (t,,. )= 8.5 ps
Radiative Coefficient (B,) = 1.0x101° cm3/s
Auger Coefficient (C,) = 1.6x10726 cm®/s
Doping (N,) = 4x10'* cm™3

Olson et al. Phys. Rev. Appl. 3, 044010 (2015)



More advanced, Auger, Radiative, SRH MWIR InAs/InAsSb T2SL
Shockley Read Hall
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More advanced, Auger, Radiative, SRH

Shockley Read Hall

(defect mitigated)
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Wafer Mapping

Lifetime
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Lifetime Sensor
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Wafer Mapping

High resolution possible

Used to get occasional dead zones

14mmy



In situ TMR installed at lon Beam Lab (I

|\

BL, Sandia)

"

* 4.5 MeV proton
radiation

« Rad chamber
equipped with
cryostat to dose
at operating
temperature



Radiation Effects: T2SL Pre-anneal vs. Post-anneal

100K in situ Recombination Rate vs. three weeks annealed
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*Post-anneal requires long waits for comparable data

*Pre-anneal offers more direct information about radiation induced defects



Radiation Effects: InAs; ¢Sb, | Trap Extraction

. A InAs ¢Sb , lifetime vs. Temperature
with low injection: e .
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*Dominant radiation-induced defect behaves as SRH trap
*Compare pre- and post- rad, assume SRH change is radiation-defects

*With plausible assumptions, extract trap energy E. and ¢ N



Radiation Effects: InAs, 4Sb, | Trap Level and Annealing
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*in s1tu fit deviations likely due to temperature measurements?

*Dominant trap level E remains at (CBE - ~48 meV)

*Reduced population of same initial radiation defect



19 I Vertical Mobility
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PHYSICAL REVIEW APPLIED 7, 024016 (2017)

B. V. Olson, J. F. Klem, E. A. Kadlec, J. K. Kim, M. D. Goldflam, S. D. Hawkins, A. Tauke-Pedretti, W. T. Coon, T. R. Fortune, and E. A. Shaner
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Microwave Based Lifetime Measurements and Analysis for Detector Materials

* Time-resolved microwave reflection lifetime measurements
* Motivation for IR detectors
* Time-resolved Photoluminescence

* Microwave measurements and dark current

* Things you can do with lifetime measurements

* Auger, Radiative, SRH extraction and dark current

Wafer mapping for growth problems

Predicting device performance from carrier lifetime

In situ radiation studies

Vertical mobility

* New concepts

* Non-contact absorption coefficient
* Top hat beam & Size limits
* Doppler



22 I Flat Beam and size limitations

Flat-top beam spot

Example of beam shaping for TEM,, Laser

£0 Edmund

optics | worldwide

0.8 08 4
0.6 0.6 4
04 04 4
0.2 4 0.2 4

Microwave beam spot

Hopefully, greatly eases
requirements for carrier
density calibration and
uncertainty for Auger,
Radiative

Similar effect can be possibly
be obtained by using smaller
samples/mesa etching

Alternative: Journal of Applied Physics EPI
119, 215705 (2016), Aytac etal.

SUBSTRATE

ThC5.5 Electrical Readout of Carrier
Dynamics in Micro-Scale Infrared
Materials, Sukrith Dev
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Non-destructive absorption coefficient measurement

TMR signal for various pump energy

Normalized pW signal
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Plot PEAK position vs. wavelength to
map out band edge

If properly calibrated with a short wavelength excitation, should be able to extract absorption coefficient




24 I Doppler Shift

JAPANESE JOURNAL OF APPLIED PHYSICS VoLr. 4, No. 11, NOVEMBER, 1965

The Doppler Effects of the Drifting

Plasma in Semiconductors

Tetsuya Arrzumi, Masayoshi UmEno and Schachi Iwar
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Doppler shift

25

Add: Heterodyne with mixer ,
‘ v

Back reflection Doppler shift: Af = — £

Microwave Circulator

Oscillator

‘ Detector

M=V/E

Signal Processing

Need known applied electric field to get
mobility, okay to start with. Can do much
more if the technique works.

Reflected Signal

O

Try something easy, optimized for current
spreading:

1 um GaAs:Si 4e18; u=2600

20 um GaAs:Si 1e15; u = 8400

(need ~0.1 um GaAs:Si 2e18 buffer layer)
n+ substrate




26 I Summary: Many uses for lifetime measurements

Minority Carrier Lifetime only

*Non-destructive cryogenic wafer diagnostics, find growth issues and predict performance
*Dark current prediction (with knowledge of doping)

*SRH Trap level extraction (with knowledge of PL)

*Vertical Mobility (with knowledge of Diffusion length)

*In situ radiation studies

*Auger, Radiative, SRH extraction

*Determine ultimate performance limits
*Non-destructive Background doping and ni extraction
*Requires attention to detail on carrier densities

Still room to grow

*Non-destructive absorption coefficient
*Top hat beam & Size limits
*Doppler



