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2  Microwave Based Lifetime Measurements and Analysis for Detector Materials

• Time-resolved microwave reflection lifetime measurements

• Motivation for IR detectors

Time-resolved Photoluminescence

Microwave measurements and dark current
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Auger, Radiative, SRH extraction and dark current

Wafer mapping for growth problems
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I Relevant for IR Detectors — nBn
nBn Photodetector

S. Maimon et al., Appl. Phys. Lett. 89, 151109 (2006)
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4 Microwave Reflectance
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• Microwaves reflected from sample surface detect this
change and monitor their decay back to equilibrium (i.e. the
carrier lifetime)

• Approximate 2 ns time resolution, fast acquisition/high
throughput, and extremely sensitive
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5 I Microwave Reflectance
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1 Lifetime and
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Dark Current
MWIR InAsSb alloy nBn
Sample #2

ND = 2E16 cm-3

r = 232 ns @ 100K

Sample #1

ND = 4E14 cm-3

r = 3.35 !is @ 100K

Pure diffusion current

• Measured, ND = 4E14 cm-3

• Measured, ND = 2E16 cm-3

—Calculated using measured r

—Calculated using measured r
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n-type doping reduced dark current
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Dark Diffusion Current

"i zdabs

Dif f = NdZMc

TMC = minority carrier lifetime
ni= intrinsic carrier density
Nd = doping level

Labs = absorber width

Lifetime is a good
indicator of the dark
current!
Olson et al. Appl. Phys. Lett. 107, 183504 (2015)



I Lifetime and Dark Current
MWIR InAsSb alloy nBn
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Dark Diffusion Current
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jpiff = id-Cmc

rim = minority carrier lifetime
ni= intrinsic carrier density
Nd = doping level

Labs = absorber width

Lifetime is a good
indicator of the dark
current!
Olson et aI. Appl. Phys. Lett. 107, 183504 (2015)



8 Microwave Based Lifetime Measurements and Analysis for Detector Materials

Time-resolved microwave reflection lifetime measurements
Motivation for IR detectors

• Time-resolved Photoluminescence

• Microwave measurements and dark current

• Auger, Radiative, SRH extraction and dark current

Things you can do with lifetime measurements

• Wafer mapping for growth problems •

• Predicting device performance from carrier lifetime

• In situ radiation studies

• Vertical mobility

• New concepts

• Non-contact absorption coefficient

• Top hat beam & Size limits

• Doppler
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Microwave Reflectance: More advanced, Auger, Radiative, SRH

Peak Signal (S) vs. initial optically Time-resolved Signal (S) as a
generated carrier densitv
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M. E. Flatte, C. H. Grein, T. C. Hasenberg, S. A. Anson, D. J.
Jang, J. T. Olesberg, and T. F. Boggess. Carrier recombination
rates in narrow-gap InAs/Ga lx In x Sb-based superlattices.
Phys. Rev. B, 59(8):5745-5750, 1999.
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More advanced,Auger, Radiative, SRH

Shockley Read Hall
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Minority Carrier Lifetime (rivic )= 8.5
Radiative Coefficient (Br) = 1.0x10-1° cm3/s

Auger Coefficient (Cn) = 1.6x10-26 cm6/s
Doping (Nd) = 4x1014 cm-3

Olson et al. Phys. Rev. Appl. 3, 044010 (2015)



More advanced,Auger, Radiative, SRH
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More advanced,Auger, Radiative, SRH
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Wafer Mapping
Lifetime

30

20

10

E

—10

—20

—30

20

15

E 10

0

—20 0
x (mm)

20

T
peak 

= 774 61 ns

= 51.8

11_._.}1 H. 
500 600 700 800 900 1000

900 30

850 20

--u7 10
1800

750
E 
'ci)

10

0

700 20

650 30

5.08

5.06

5.04

Y 5.02

c, 5

4.98

4.96

4.94

—20

PL

0
x (mm)

0 . o .

20

• Horizontal
• Veritcal

-20 0 20
Position (mm)

•

•

5.08

5.06

5.04 :E"
cr)

5.02 (7)
a)

5 (3

4.98 'di

4.96

4.94

X-Y stages. 300mm stage used to
move sensor head out of the way
to provide clearance for quick
access door to open

Lifetime Sensor
Assembly



I Wafer Mapping
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In situ TMR installed at lon Beam Lab (IBL, Sandia)

• 4.5 MeV proton
radiation

• Rad chamber
equipped with
cryostat to dose
at operating
temperature



Radiation Effects: T2SL Pre-anneal vs. Post-anneal

100K in situ Recombination Rate vs. three weeks annealed
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Radiation Effects: InAs0.9Sb0.1 Trap Extraction

with low injection:
,-1  no + po
l'srh

rpo 0.o + n1) + Tno (Po + pi)

Tpo = (Grp 19pNt

Tn0 = (6nVnNt) 1

ni = nie(Et-Ei)lkT

131= nie(Ei-Et)IkT

Assumption: 6n= 6p = 6

InAs.9Sb.1 lifetime vs. Temperature
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Radiation Effects: InAs0.9Sb0.1 Trap Level and Annealing
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19 Vertical Mobility
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20 Vertical Mobility
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Basc
Contact

Collector
Contact

1 n-T2SL Collector, 200 nm, Si:le18 c

p-T2SL Emitter, 200 nm,
Be:1E18 cm-3

T2SI. Emitter. 20 nrn. nid

n-T2SL Basc, 3000 nm, nid

n jn-T2SL Collector, 200 nrn, nid

GaSb Buffer, 50 nm, nid

Mil n-GaSb Substrate

(d)

IE

VEB

0.12

0.09

0.06

0.03

6 8 10 12 14 16

Photon Wavelength (pm)

Recornbination

_EM

Cp

BCp
IC

VBC,

EBIC: Journal of Applied Physics 122, 074503 (2017), N.
Yoon, C. J. Reyner, G. Ariyawansa, J. M. Duran, J. E.
Scheihing, J. Mabon, and D. Wasserman

kT LD
D = - =

q -cm

ph = (q_Dh)/(k1371)

Temperature (K)
180 100 60 40 30 20

(4)

T,

1

•

• .1

0.1 0.2 0,3 0,4 0.5 0.6

1/kBT (1/rneV)

PHYSICAL REVIEW APPLIED 7, 024016 (2017)
B. V. Olson, J. F. Klern, E. A. Kadlec, J. K. Kirn, M. D. Goldflarn, S. D. Hawkins,
A. Tauke-Pedretti, W. T. Coon, T. R. Fortune, and E. A. Shaner



21  Microwave Based Lifetime Measurements and Analysis for Detector Materials

• Time-resolved microwave reflection lifetime measurements
• Motivation for IR detectors

Time-resolved Photoluminescence

Microwave measurements and dark current

• Things you can do with lifetime measurements
Auger, Radiative, SRH extraction and dark current

Wafer mapping for growth problems

- Predicting device performance from carrier lifetime

In situ radiation studies

• Vertical mobility

• New concepts
• Non-contact absorption coefficient

Top hat beam & Size limits

Doppler



22 Flat Beam and size limitations
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23 Non-destructive absorption coefficient measurement
TMR signal for various pump energy
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24 I Doppler Shift

JAPANESE JOURNAL OF APPLIED PHYSICS VoL. 4, No. 11, NOVEMBER, 1985

The Doppier Effects of the Drifting

Plasma in Semiconductors

Tetsuya ARIzule, Masayoshi UMENO and Sohachi IwAI
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25 Doppler shift

Microwave
Oscillator

Sample

Add: Heterodyne with mixer

Signal Processing

Back reflection Doppler shift:

p = v/E

2v
of = L

Need known applied electric field to get
mobility, okay to start with. Can do much
more if the technique works.

Try something easy, optimized for current
spreading:

1 um GaAs:Si 4e18; u=2600
20 um GaAs:Si 1e15; u = 8400

(need —0.1 um GaAs:Si 2e18 buffer layer)

n+ substrate



26 1 Summary: Many uses for lifetime measurements

Minority Carrier Lifetime only 

Non-destructive cryogenic wafer diagnostics, find growth issues and predict performance

Dark current prediction (with knowledge of doping)

SRH Trap level extraction (with knowledge of PL)

•Vertical Mobility (with knowledge of Diffusion length)

In situ radiation studies

Auger, Radiative, SRH extraction 

•Determine ultimate performance limits

Non-destructive Background doping and ni extraction

Requires attention to detail on carrier densities

Still room to grow

'Non-destructive absorption coefficient

Top hat beam & Size limits

Doppler


