EEEEEEEE
EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-801481

MULTICHANNEL SPECTRAL
ESTIMATION: An Approach to
Estimating/Analyzing Vibrational Systems

J. V. Candy

January 15, 2020



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



MULTICHANNEL SPECTRAL ESTIMATION:
An Approach to Estimating/Analyzing Vibrational Systems

J. V. Candy

Dynamic structures either operational or under test require complex spectral analysis in
order to characterize their modal responses. In some applications constant vigilance in terms
of analysis or potential failures demand an accurate methodology to estimate both modal
frequencies as well as mode shapes. Multichannel versus single channel processing can create
a dilemma especially when specific modes are not excited across all measurement channels
or weakly excited implying multichannel techniques are required to extract them from noisy
data. Here we investigate a suite of both classical and modern parametric spectral estimation
techniques to extract modal frequencies based on synthesized multiple input /multiple output
(MIMO) structural data.

1 INTRODUCTION

Structural systems operating in noisy environments create a challenging analysis and mon-
itoring problem in order to estimate their signatures in real-time and predict potential
anomalies that can lead to catastrophic failure. In order to estimate the condition of a
structure from noisy vibration measurements, it is necessary to identify features that make
it unique such as emitted resonant (modal) frequencies that offer a signature characterizing
its condition. The monitoring of structural modes to estimate the condition of a device
under investigation is essential, especially if it is a critical entity of an operational system.
Many simple algorithms like the fast-Fourier transform coupled with spectral peak-picking
offer a technique to extract modal frequencies of a structural object for both computational
speed and accuracy [1]-[7]. Here we investigate a suite of multichannel spectral estimation
techniques that enables an accurate extraction of modal frequencies from noisy uncertain
measurements.

Spectral estimation is a necessary methodology to analyze the frequency content of
noisy data sets. Many techniques have evolved starting with the classical Fourier transform
methods based on the well-known Wiener-Khintchine relationship relating the covariance-to-
spectral density as a transform pair culminating with more elegant model-based, parametric
techniques that apply prior knowledge of the data to produce a high-resolution spectral esti-
mate [8], [9]. The popular correlation or so-called Blackman-Tukey method [9] that Fourier
transforms a windowed covariance satisfying the Wiener-Khintchine relationship directly
was developed with the advent of the fast Fourier transform (FE'T). Currently for long data
records, the most popular approach is the Welch Periodogram Method ( WPM) that is based
on averaging normalized periodograms estimated from windowed, overlapped sections of data



[1]. Here the usual trade-off between estimator bias/variance dominates the spectral design.

Multichannel spectral representations of structural systems are a class of both paramet-
ric as well as non-parametric estimators that provide improved spectral estimates especially
for vibrating mechanical structures. Excitations of these structures can be problematic, since
some of the underlying modes may be weakly excited or not excited at all depending on the
type and locations of the input signal. In any case, the classical multichannel Blackman-
Tukey (BTM) and Welch (WPM) techniques can provide reasonable estimates when coupled
with modal “peak-peaking” methods as long as the signal-to-noise ratio (SNR) is reasonably
high. Parametric multichannel methods can perform quite well in low SNR environments
even when applying simple peak-picking techniques. In this report we investigate the per-
formance of both nonparametric and parametric multichannel spectral estimation methods
when applied to synthesized noisy, structural vibration data.

The classical non-parametric BTM and WPM are applied to the data set, first, followed
by the parametric approaches consisting of the Yule-Walker ( YWM), Burg-lattice (BLMorfV,
BLNutS), Minimum Variance (M VM) methods all employing the multichannel autoregressive
(AR) all-pole model. Next the model-based methods (MBM) follow based on the linear, time
invariant (LTI) multichannel state-space (SSP) representation of the vibrating structure
consisting on an embedded mass-damper-spring (MCK) model. All of these methods are
analyzed output channel-by-output channel, since some modes are not strongly excited (low
SNR) and are not spectrally visible in a given channel.

In Sec. 2, we first define the multichannel spectral estimation problem and then pro-
ceed to briefly develop both the corresponding AR and SSP-model sets used throughout.
Multichannel spectral estimation techniques are developed in Sec. 3 starting with the classi-
cal, Blackman-Tukey (correlation) method (BTM) and Welch Periodogram method ( WPM)
followed by the Yule-Walker (YWM), Burg-lattice, Morf-Viera (BLMorfV), Nutall-Strand
(BLNutS), and the minimum variance method (M VM) evolving to the model-based FULL
(stochastic realization) and FAST (constrained) state-space approaches. In Sec. 4, vibra-
tional systems are developed for both single channel as well as multichannel MCK-systems
leading to the state-space representations. The synthesis of noisy acceleration measurements
for a multichannel structure is discussed in Sec. 5 and used as test data for the various meth-
ods. Performance analysis of these algorithms is discussed for comparative purposes with
the results of this effort summarized in the final section.

2 Multichannel Models

In this section we develop multiple channel (output) models starting with a set of in-
put/output representations eventually leading to more physics-based representations based
on state-space models. Typical deterministic multiple input/multiple output (MIMO) sys-



tems can be characterized by their impulse response matrices or equivalently multichannel
transfer function matrices given by

t
y(t) = HW) *ult) = [ H(t = )u(r)dr (1)

7=0
for y € RM>*! the vector of outputs or measurements, u € RV*! the vector of inputs or
excitations, H € RNv*Nu the impulse response matriz and = the multichannel convolution

operator where

hii(t) -+ hin, (%)
H(t) = : : (2)
hna(t) -+ hayn,(t)
Equivalently, taking the Laplace transform of Eq. 1, (Y(s) = L(y(t))), we obtain the
frequency domain representation (s = o + jw)

Y (s) = H(s) x U(s) (3)

with the N, x N, transfer function matriz defined by the ratio of outputs-to-inputs for

Hyi(s) -+ Hin,(s)
H(s) = = : - : (4)
Hy,(s) -+ Hy,n,(s)

Rather than a vector of deterministic inputs, {u}, suppose it is random, then we can re-
place the deterministic relationship in terms of their stochastic counterparts—the correlation

and power spectra assuming a zero-mean, stationary processes. That is, the multichannel
correlation matriz defined by R;; := E{y(i)(t)u(t + 7}

Ry (1) -+ Rin,(7)
Ryu(T) = P : ()
Bya(7) -+ Rayn,(7)

Again taking the Laplace transform of the correlation matrix (S(s) = L(Ry.(7)), we
obtain the frequency domain representation (Wiener-Khintchine relation [9]) or the multi-

channel power spectrum matriz given by [18])

511(8) s SlNu(S)
Syu(s) = P : (6)

Sna(s) - Swow(s)

for S;j(s) := L{R;;(7)}.
Continuous-time processes provide the insight into the overall operational aspects of
system performance but with ”fast” digitizers coupled to on-board sensors, it makes more
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sense to consider their sampled-data/discrete counterparts. With this in mind, sampled-data
systems evolve quite easily, that is, replacing time with sampled time ¢ — t;, we have that
the impulse response of continuous-time leads to

K

y(te) = H(tr) xu(ty) = Y H(ty — 7)u(m) (7)

k=0
All of the relations (above) follow as well for ¢ — ¢, with the discrete-time Z-transform

(Z) replacing the continuous-time Laplace transform (£) leading to the sampled/discrete
transfer function, H(s) — H(z)') such that

Y(z) = H(z) x U(z) (8)

with the sampled or discrete-time N, x N, transfer function matrix, H(z) defined by the
ratio of outputs-to-inputs as before.

Discrete random vector inputs u(t) also lead to a version of the Wiener-Khintchine
relation for the discrete-time case as

Syu(2) = Z{Ryu(0)} (9)

Therefore, the multichannel spectral estimation problem is simply:

GIVEN a set of N,-input sequences and N, output sequences, FIND an estimate of the
corresponding N, x N,-power spectrum matrix, Sy, ()

With this background and definitions in mind, we can now proceed to investigate various
multichannel discrete-time relations that will lead to a suite of spectral estimators.

2.1 Multichannel Models: Input/Output (Autoregressive Moving
Average Representation)

The multichannel input/output or equivalently autoregressive moving average (ARMA) model
is defined by the matrix polynomials

y(t) =— gti Ay (t — k) + zb: Biu(t — k) (10)
k=1 k=0

where Aj, € RYNv and B, € RM*M« are the sets of matrix polynomials.

IThe Z-transform is the discrete-time equivalent of the Laplace transform of continuous-time and is
related through the impulse invariant transformation given by Z = 27T,



Taking the Z-transform of Eq. 10 gives the input/output relationship in the frequency
domain as

Y(z2) = A (2)B(2) U(z) (11)
—_——
H(2)
for A(z) =T+ SN Apz=" and B(z) =1+ X%, Bz k.
The corresponding discrete transfer function in terms of the matrix polynomials is given

by

H(z) = = A7 (2)B(2) (12)

for H(z) € RNv*Nu,
As before, in terms of matrix polynomials for random vector signals, we have the mul-
tichannel power spectrum defined by

.i.
Pyyl(2) = H(2) x HI(2) = (A7 (2)B(2)) % Puu(2) x (A7 (2")B(2")) (13)
where * is the complex conjugate and T is the Hermitian conjugate operation.
For spectral estimation purposes, we will simplify the ARMA-model to an all-pole or
equivalently autoregressive (AR) representation such that (u — e, B — I), that is, Eq. 10
becomes

y(t) = =3 Awy(t — k) +e(?) (14)

k=1
where e is a random, zero-mean, white noise vector with corresponding variance matrix R...
For this case the power spectrum simplifies to

Polz) = H(z) x HI(2) = A7 (2) x Ree x (A7)

The stationary N,-channel autoregressive process can be also be expressed as a block

(15)

vector product

ey, (t) = an, X yn,(t) (16)

where

ay, = {ING A, (1) "ANG(Na)}

and yy, € R x 1.



2.2 Multichannel Models: State-Space Representation

State-space representations have become an integral component of mechanical systems es-
pecially in the area of health monitoring. Since we sample the continuous-time system, we
will employ a discrete state-space representation and then transform the results back to the
continuous-time domain, when required, for eventual modal analysis.

The generic linear, time invariant, deterministic, state-space model is defined by its
system matrix A, input transmission matrix B and output (measurement) matrix C for
discrete-time systems as

x(t+1) = Ax(t)+ Bu(t) [State]
y(t) = Cx(t) [Output] (17)

for the state x € RN=*! input u € R¥«*! and output y € RVv*1.
Corresponding to this representation is the discrete transfer function in terms of the
Z-transform

H(z) =C(zl — A)'B (18)

with the corresponding impulse response termed the Markov parameters [10], [11]

H(t) = CA"'B (19)
Expanding the state equations, it is easily shown that [11]

t—1
x(t) = A'%(0) + > A" " 'Bu(k — 1); t=0,1,---, K (20)
k=0

and therefore the output is given by

t—1
y(t) = CA'x(0)+ > CA" " 'Bu(k — 1) (21)
k=0
With the state-space representation in mind and assuming again that u is zero-mean,
random white noise, we can easily cast the multichannel spectral estimation problem into
this framework. Recall that the output power spectrum? is given by

Pulz) = H(z) x HI(2) = (C(21 = A)7'B) x Ry x (C(="1 - A)7'B)' (22)

Therefore, we see that both the multichannel autoregressive and state-space models
can be used to: (1) represent multichannel systems; and (2) parameterize the multichannel

2We have ignored measurement noise for simplicity.



power spectrum that can be used to solve our underlying modal problem to follow. This
completes the set of multichannel models that we will exploit in this report, next we consider
the mechanical systems that we investigate throughout.

3 Multichannel Spectral Estimation

With the initial application of Fourier analysis techniques to raw sun-spot data over 200
years ago, the seeds of spectral estimation were sown by Schuster [12]. Fourier analysis
for random signals evolved rapidly after the discovery of the Wiener-Khintchine theorem
relating the covariance and power spectrum. Finally with the evolution of the fast Fourier
transform (see Cooley [8]) and digital computers, all of the essential ingredients were present
to establish the classical approach to classical or nonparametric spectral estimation.

Spectral estimation techniques have been developed and improved over the years with
one major task in mind—the analysis of random data. A majority of the initial effort was
focused on applying the Wiener-Khintchine theorem and transform theory, while modern
parametric techniques evolved primarily from the “speech” community [13], [14]. In this
section, we discuss popular classical (nonparametric) methods that are viable, when long
data records are available. We make no attempt to provide detailed derivations of the
algorithms that are available in other texts [13], [15], [16], [17], but just follow a brief outline
of the approach and present the final applicaton results.

Classical spectral estimators typically fall into two categories: direct and indirect. The
direct methods operate directly on the raw data to transform it to the frequency domain
and produce the estimate. Indirect methods, first estimate the covariance sequence and then
transform to the frequency domain—an application of the Wiener-Khintchine theorem. We
discuss two basic nonparametric multichannel spectral estimation techniques: the correla-
tion method (indirect) and the periodogram method (direct).

3.1 Classical Non-Parametric Multichannel Correlation or Blackman-
Tukey Method (BTM)

The correlation method or sometimes called the Blackman-Tukey method (BTM) is simply
an implementation of the Wiener-Khintchine theorem: the covariance is obtained using a
sample covariance estimator and then the power spectral density (PSD) is estimated by
calculating the discrete Fourier transform (DFT). The DFT transform pair is defined by

Y(Qn) = DFT|y(t)] =Y y(t)e 7



1M1

i z_j Y (Q,,)el (23)

t=0

y(t) = IDtFT|Y(Qn)| =

for Q,, = %m where it can be thought of as the DtFT with Q — €),,, that is, the DtF'T
sampled uniformly around the unit circle [15].

The multichannel case with y — y and Y — Y leads to the multichannel correla-
tion/spectrum matrices with sample correlation estimate

K—|g|
R(0)= 76 3 ¥lt+0¥1(0) (24)

and the corresponding correlation matrix is

Ryy(T) = : : (25)
Ryy(_K) T Ryy(o)
Again taking the Fourier transform of the correlation matrix (S(2,,,) = DtFT(R,,(¢)),

we obtain the frequency domain representation (Wiener-Khintchine relation [9]) or the mul-
tichannel power spectrum matriz, that is, [18]

- 1 M. )
§,,(Q) = — S R, (£)e ! (26)
vy M &= Yy
given by
Syy(Ll) Syy(lvM)
Syy(Q) = : - : (27)
Syy(Mv 1) Syy(M7M)

for Syy(i,j) = E{RZJ(E)}
Therefore, we have that

Syy(Q) = DtFT [fzyy(g)]

A

Ryy(6) = IDFT[S,,(Q)]

This transform approach tends to produce a noisy spectral estimate; however, a smoothed
estimate can be obtained by multiplying each R,, by a window function, YV usually called
a lag window. The window primarily reduces spectral leakage and improves the estimate.
It is also interesting to note that a sample covariance estimator does not guarantee the
positivity of the PSD (auto) when estimated directly from the Wiener-Khintchine theorem



[15]. However, if the estimator is implemented directly in the Fourier domain, then it will
preserve this property, since it is the square of the Fourier spectrum.
We summarize the correlation method (Blackman-Tukey) of spectral estimation by:?

Correlation (Blackman-Tukey) Method (BTM) Spectral Estimation:

1. Calculate the DE'T of y(t), that is, Y (£2,,)

2. Multiply Y (,,) by its Hermitian conjugate to obtain, Y (Q,,) x Y(Q,,)
3. Estimate the covariance from the IDFT, Ry, (k) = IDFT[[Y(Qm)H

4. Multiply the covariance by the lag window W(k), and

5. Estimate the PSD from the DFT of the windowed covariance, Sy, (Q,,) = DFT [ﬁyy (0)x
W(k)]

These correlation spectral estimates are statistically improved by using a lag or equiva-
lently spectral window.* With practical window selection and long data records, the corre-
lation method can be effectively utilized to estimate the PSD (see [15] for more details).

3.2 Classical Non-Parametric Welch Average Periodogram Method
(WPM)

Next we consider a more direct approach to estimate the PSD. We introduce the concept
of a periodogram estimator with statistical properties equivalent to the correlation method,
then we show how to improve these estimates by statistical averaging and window smoothing
leading to Welch’s method of spectral estimation, that is, the Welch Periodogram Method
(WPM) [1]. The periodogram was devised by statisticians to detect periodicities in noisy data
records [12]. The improved method of spectral estimation based on the so-called periodogram
defined by

1 1
— T -
Py, () = 77 (Y(Qm) x YI(Qn)) = M\Y(Qm)
The samples of P, are uncorrelated, suggesting that one way of reducing the variance
in P, is to average individual periodograms obtained by sectioning the original N point

data record into K, L-point sections, that is,

‘ 2

3Note also if we replace X* by Y* we can estimate the cross correlation Rmy(k) and corresponding cross
spectrum S”W(Q,,,L) using this method.

4The window function is called a lag window in the time or lag domain W(k) and a spectral window in
the frequency domain W({,,) with its maximum at the origin to match that property of the autocorrelation
function; therefore, it is sometimes called a “half” window.



N 1 K . ,
Syy(Qm) = K Z Pyy(va i)
i=1

where lsyy(Qm, i) is the i-th, L-point periodogram. If x is stationary, then it can be shown
that this estimate is consistent, since the variance approaches zero as the number of sections
become infinite [15]. For the periodogram estimator, we have

1 K
var o 17 and bias x N

So we see that for K large, the variance is inversely proportional to K, while the bias is
directly proportional. Therefore for a fized record length N as the number of periodograms
increases, variance decreases, but the bias increases. This is the basic tradeoff between
variance and resolution (bias) which can be used to determine a priori the required record
length N = LK for an acceptable variance. A full window, W(t), can also be applied to
obtain a smoothed spectral estimate.

Welch [1] introduced a modification of the original procedure. The data is sectioned
into K records of length L; however, the window is applied directly to the segmented records
before periodogram computation. The modified periodograms are then

P(Qn,i) = é ’DFT[yi(t)W(t)W i=1,... K

where
1 L—-1

U= Z§W2<t)

and

A~

1 E .
Syy () = K ZP(Qm7i)
=1

We summarize the average periodogram method (Welch’s procedure) by:

Average Periodogram (Welch) Method (WPM) Spectral Estimation:

1. Section the data, {y(t)},t =1,..., N into K sections each of length L, where K = %,
that is,

vit)=y(t+Li—1), i=1,... K, t=0,...,L—1

2. Window the data to obtain, y;(t) x W;(t)
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3. Estimate K periodograms using the DF'T as

PO, 1) = é DFTly W) i=1,.. K
with U = 7 32 W2 (1)

4. Estimate the average spectrum using

Syy(Qm) = Il(—z

=1

awl

(2, 7)

with var{S,,(Qm)} o« + and bias{Sy, ()} x £ adjusted for particular windows.

3.3 Parametric Multichannel Spectral Estimation: Yule-Walker
Method (YWM)

A variety of techniques to estimate discrete multichannel spectral estimators evolved from
early seismic work in the 1960’s to sophisticated techniques in the 1980’s [19]-[22]. These
techniques essentially evolved from the lattice methods developed by Robinson and Burg
employing the Levinson technique and was extended to the multichannel (output-only) case
[19], [20].

The basic spectral relations follow directly from linear systems with random inputs [15].
The measurement of the output spectrum of a process is related to the input spectrum by
the factorization relations (in terms of the Z-transform:

Syy(2) = H(2) x H'(2) X Seelz) = [H(2)[* X See(2) (28)
where
e is the N,-input process vector (white noise)
H is the linear system NN, x N, transfer function matrix
y is the Ny-measurement process vector

Since we are taking the output-only viewpoint, then we will assume that only the measured
data, y, are available and not the excitation, e. In fact, if both e and y are available then
the problem is called the system identification problem (see Ljung [23] for details) and the
ARMAX model can be used.

In summary, the modern method of parametric spectral estimation is given by:
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o Select the representative model set (AR)
e [stimate the model parameters from the data, that is given {y(t)}, find
6= {A(z)} and R
e FEstimate the PSD using these parameters, that is,
Syy(2) = Syy(2,0) = H(2) X H(2) X See(2)
where H(z) = A(z) and See(2) = Ree

The Yule-Walker method of multichannel spectral estimation is based on solving the
following set of linear matrix equations by first redefining the multichannel autoregressive
model of Eq. 16 further in terms of the forward prediction error as

es(t) =an, x y(t) (29)
where recall

ay, = {ING An, (1) "ANG(Na)}

and y € RM x 1.
Post-multiplication of this relation and taking the expectation yields [18§]

E{es(t)y' ()} = B{ax, x y()y'(t)} = an, E{y(1)y'(t)} (30)
with Ry, (¢) € CN*Me a block Toeplitz matrix. Eqn. 30 can be expanded to yield the Yule-
Walker equations, that is, expanding we obtain

E{es(0y' (1)} = E{es (1) —;?aNa<£>y*<t—e>} —[P; 0 ---0] (31)

which can be written in vector-matrix form as the multichannel version of the Yule-Walker
normal equations:

ay, xRy, =[Py 0 ---0] (32)

The YW relations enable the extraction of the multichannel (predictor) coefficient ma-
trix and therefore the solution to the multichannel autoregressive power spectrum given
by:

.I.

Par(z) = A7} (2) x Py x (A71(2")) (33)

The Yule-Walker normal equations can be solved efficiently by the multichannel version

of the Levinson recursion (see Refr. [18] for details). Next we consider a suite of lattice-based
solutions to the multichannel spectral estimation problem

12



3.4 Parametric Multichannel Spectral Estimation: Burg Lattice
Method (BLM)

The suite of multichannel lattice methods is based on of the forward and backward prediction
errors of the AR-model, defined by

er(t) = y(t)— Z;f(n,N)Y(t —n)
ey(t) = Z B(n,N)y(t — N +n)

(34)

where {F(n, N)} and {B(n, N)} are the respective forward and backward N x N prediction
coefficient matrices.
Minimizing the prediction errors defined by

P; = E{es(t)el(t)} =tr[Uy]

P, = Eleft)e)(t)} =tr[Vy]

(35)

satisfy a set of block-Toeplitz normal equations [18]
I F(,N) - FN,N)]] RO  RI(1) - RIN) Uy 0
B(N,N) B(N—-1,N) --- I R(N) R(N—1) --- R(0) 0 O
(36)

The solution to these multichannel equations is given by the Levinson-Wiggins-Robinson
(LWR) algorithm recursively relating the set of (N —1)*-order coefficients to the (N)-order
set, that is, [19], [24]

N-1
Ky = > F(N,N-1R(N —1) [Reflection Coeft ]
n=0
F(N,N) = —KxVi, [Forward Coeft ]
B(N,N) = —KLU, [Backward Coeff.]
Uy = I-F(N,N)B(N,N))Uy_4 [Forward Var.]

13
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Vy = (I-B(N,N)F(N,N))Vn_4 [Backward Var.]

F(n,N) = F(n,N—-1)+F(N,N)B(N—n,N) for 1<n<N-1
B(n,N) = B(n,N—1)+B(N,N)F(N —n,N) for 1<n<N-1
with Uy, = Vy=Ry; F(0,n) =B(0,n)=1  for 1<n<N-1(@37)

Numerically, the Burg lattice method [20] can have problems because the required co-
variance matrices may not preserve their positive semi-definite property. Therefore, Nutall-
Strand (BLNutS) approach [22] constrains the calculation to preserve these properties while
still employing the LWR-algorithm, but altering the computation of the corresponding re-
flection coefficient IC that is the solution of the bilinear equation

Vit x Py + KnUy  Pr = —2Rj(N) (38)

satisfying a weighted arithmetic mean criterion between the forward and backward prediction
errors [22].

The Morf-Viera (BLMorfV) approach (maximum entropy solution) also uses the LWR-
algorithm, but the reflection coefficient is computed as the weighted geometric mean of the
forward /backward errors such that [21]

Ky = U x Rpp(N) x V7 (39)

where /2 is a matrix square-root (Cholesky decomposition) operation.
The generic multichannel spectrum is given by

T
Por(z) = A7 (2) x Py x (A7(2"))
where A7!(z) is expressed in terms of either the forward (F) or backward (B) recursions
of Eq. 34. This completes the multichannel AR approach providing solutions to the multi-
channel spectral estimation problem. Next we investigate another alternative technique still
based on the underlying multichannel A R-model.

3.5 Multichannel Spectral Estimation: Minimum Variance Method
(MVM)

Another approach to multichannel spectral estimation evolves from the array signal process-
ing literature [13] where the multichannel “spatial” power spectrum is estimated. Here the
minimum variance or to be more precise minimum variance distortionless response technique
(see [18] for details) has evolved. It is based on the idea constraining the processor to pass a
narrowband frequency (distortionless response) while minimizing the power (minimum vari-
ance) of those frequencies outside of the narrow band. It can be calculated directly from the
inverse covariance matrix as

14



Suv(Q) == At {e(Q)R—leT(Q)}‘I
where R is the block Toeplitz matrix (as before) and e is a block complex sinusoidal vector
defined by ||
e(Z) = [[m eijAt[m .. eijNaAt[m}

An alternative approach is based on using the multichannel AR-model such that [18]

~

Suv () = At[g_f: o)™

{ At (N + 1= £ = ) AT+ )P AG) — iBY(C+ )P, B(i)} for 0< < N,
o(() =
of(—1) for -1 < ¢ < —N,

Next we consider a different approach to solving this problem using the multichannel state-
space representation leading to a “model-based” solution.

3.6 Multichannel Spectral Estimation: State-Space Approach

We start with the innovations (INV) state-space model and investigate its properties leading
to the multichannel spectral representation. Note that it is equivalent to the steady-state
Kalman filter for stationary processes, that is, the innovations representation of the Kalman
filter in “prediction form” is given by (see [24] for details)

zt+1) = Azx(t)+ Ky(t)e(t) [State Estimate]
y(t) = Cz(t) +e(t) [Measurement]
gty = Cz(t) [Measurement Estimate]
e(t) = yt)—y) [Innovation]

(40)

where e(t) is the innovation sequence and K,(t) is the predicted Kalman gain for correlated
noise sources cov(w,v) with state error covariance P(t) given by

R..(t) = CP@)C' + Ry(t) [Innovations Covariance]
() = (A~I5(t)0’ + Ry (1)) RL(D) [Kalman Gain]
Pt+1) = AP(t)A = Kp(t)Ree(t) K, (t) + Ryw(t) [Error Covariance]

(41)
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and we have used the simplified notation: (¢ + 1|t) — &(t + 1) and P(t + 1|t) — P(t + 1).
In terms of this model, the “transfer function” of the INV-model is defined by
Y(2)
T(z):=
(2) E(Z)

Calculating the measurement covariance corresponding to »;yy, when svd

=C(zI — A)'K, (42)

y(t) = e(t) +y(t)
gives

Ry (€) = covly(t + O)y(t)] = Ryy () + Rye(l) + Rey(€) + Ree(€) (43)

Taking the Z-transform of this relation, we obtain the multichannel (measurement) PSD in
terms of the innovations model as

Syy(2) = 59y(2) + Spe(2) + Sej(2) + See(2) (44)

where

Sia(2) = 0S::(2)C" = T(2)See(2)T'(271);  Seel2) = Ree
Spe(2) = CSze(2) =T (2)S(2); and Sey(z):See(z)T’(z’l)
(45)

Thus, the multichannel PSD of the state-space (innovations) model is given by

Syy(2) = T(2)See(2)T'(271) + T(2) See(2) 4+ See(2)T'(271) + See(2) (46)

Substituting for T'(z) and replacing Se.(z) = Re., the measurement power spectrum can
be expressed as

(Rel)T'(7)
- — [Spectral Factors]
(B2

Syy(2) 1= He(2) x Hy(z7") = [T(2)RL? | Rel?]

e

(47)

Next, we must show how the INV-model (Kalman filter) relates to the Kalman filter
parameters in order to specify a stochastic realization. Therefore, the model set for the
innovations model is defined as

EINV = {Aa B> Oa Da Kpa Ree}

The stationary measurement covariance at lag ¢ is given by
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C_ AT (AIC'+ KyRe)  for £>0
—
C A 7z
B
Ay =1 cric’ + R.. for (=0 (48)
—_———
D+D’
Ay (—0) for ¢<0

where Yxgp = {A, B,C, D} is the underlying Kalman-Szego-Popov (KSP) model [26].
The solution can be stated formally as:

GIVEN a minimal realization Yxgp of {A;}, THEN the model set ~{fl, B,C,D,11} is a
stochastic realization of the measurement sequence, if there exists a II > 0 such that the
following KSP equations are satisfied:

M-AnA = K,R.K,
B-ATIC" = K, R.
D+D —-CHIC" = R (49)

Solving for K, in the second KSP-equation of Eq. 49 and substituting the last equation
for the innovations covariance R, yields
K,=B-ATC)x(D+D —-CTCH™* (50)
Substituting these expressions into the first equation of Eq. 49 above shows that the
state error covariance II satisfies a discrete Riccati equation, that is,

T = ATIA’ + (BATIC")(D + D' — CTIC") (B — AIIC')  [Riccati Equation] (51)
guaranteeing a proper stochastic realization(w > 0).

Any deterministic realization algorithm applied to {A,} such that the following Hankel
factorization yields a reasonable approach to extract the KSP relations evolving from the
innovations model. For instance, the well-known, classical Ho-Kalman SVD-approach [25]
can be applied to give

AKJ( = OK X ék

C
CA
= : [ ATIC" | APTICY | - | ARTHIC (52)

CAK—2 Ck
| S ——
Ok

17



Once the 3 g gp model is estimated from the covariance sequence, then the KSP-equations
can be solved to complete the stochastic realization, that is,

R = D+ D—éﬁé
K, = (B-ATIC)xR; (53)

We summarize this approach as:

e Perform a realization (deterministic) to obtain Xxgp
e Solve the Riccati equation of Eq. 51 to obtain II

e (alculate R, and K from the KSP-equations of Eq. 53

Thus, we see that performing a deterministic realization from a Hankel matrix populated
by the covariance sequence {A;} yields the model ) xsp that is used to estimate I from
the corresponding Riccati equation giving the corresponding Kalman gain and innovations
covariance [26].

A numerically efficient approach to solving this “output-only”, multichannel spectral
estimation problem is to apply subspace methods directly to the data. Subspace methods
applied to the output-only problem, perform an orthogonal projection in a Hilbert space
occupied by random vectors [26]. That is, if y¢(¢) is a finite random vector of future outputs
and y,(t) a random vector of past outputs, then the orthogonal projection of the “future
output data onto the past output data” is defined by P, ,,. We define the following block
Hankel matrices for future and past data as:

yb) e y(K+E-1)
Yy = : : : [FutureData)
y(2k—1) -+ y(K+2k-2)
[ y(0) - y(K-1)
Y, = : : : [PastData)]
L y(k-1) - y(K+E-2)

An orthogonal projection of the row space of future data )y onto the row space of past data
Y, is given by [27], [28]

Py, = Vs % Pay, = E{Y < E{),0} T x 9, = Tu x T x ), (54)

Ty Tk

where the underlying matrices are defined in terms of block Toeplitz covariance matrices,
that is,
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A, oo Ay
Ty = E{YV; )} = L | e RFNuxRN (55)
A2k—1 T Ak

with the data assumed to be generated by the innovations model and measurement output
covariance given by

Ay = CA(ATIC! + K, R..)

Be

Therefore, we obtain a factorization similar to that of deterministic realization theory [25]

[ CA*B, ... CB,
Tk _ : .. : c RkNkaNy
_C’A%*ZE6 .. CAF'B,
C
= : | AB | - | B, | (56)

k-1

cﬁl,_/ Cap(k)
Oy

given by the product of the observability matrix and the reversed controllability matrix
The block Toeplitz matrix of the projection 7 is

Ao - Ai_g
T = E{ypy;)} = € RFNyxkNy (58)
Ak—l tc AO
Using the innovations model, it has been shown that the augmented state vector
/'?k = [fgk Xpi1 o §<K+k;_1] € RNax KNz

satisfies the following relation [29], [30]

X = Coplk)x T, x Y, (59)

and therefore, incorporating this expression into the orthogonal projection, we obtain

ny|yp =T, x 77;1 X yp = Ok éZB(k) X 'Z;;l X yp = Ok X /?k (60)

X
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Thus, both the extended observability matrix as well as the estimated state vectors can
be extracted by performing the singular value decomposition of the orthogonal projection
matrix, that is,

v, |0 V.
Pysiy, = [UNZ | UN} - = - —— | = Un 2N VR,
0 | Zwv ][ Vy
where Xy, >> Y and
Py, = O = (Un.ZN7) ((Sh)V2VR,) (61)
On, P

With the singular value decomposition available, we exploit the projection to extract
the system and output measurement matrices [26], [33]

A=0% 0k = (SN UL) x O); C=0(1:N,1:N,) (62)

where (’)]T\,gc is the observability matrix “shifted-up” one row and # is the pseudo-inverse.
The input transmission matrix (B.) can be extracted by first estimating the reversed
controllability matrix from Eq. 57

Cap(k) = 0% X Trp = (Sn?UL) X Tix (63)

and extracting the last k-columns to obtain

B=B.=C,s(1:N,, (k—1)N,: kN,) (64)
The input-output transmission matrix is obtained from the sample covariance estimate

of Ao
D= A, (65)

With the Xxgp = {A, B, C’, D} model now available, we can solve the Riccati equation
to obtain II > 0 and extract the remaining matrices to provide a solution to the “output-
only” stochastic realization problem.

Thus,, the “output-only” subspace stochastic realization (O0O-SID)? algorithm is accom-
plished using the following steps:

e Create the block Hankel matrix from the measured output sequence, {y(t)};

e Calculate the orthogonal projection matrix Py, y, as in Eq. 54 ;

For structural dynamic systems only the system (A) and measurement (C) matrices are required to
extract the modal frequencies and shapes [31], [32].
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e Perform the SVD of the projection matrix to obtain the extended observability and
estimated state vectors in Eq. 61;

e Fuxtract the system matrix A and output C' matrices as in Eq. 62;

e Calculate the reversed controllability matrix C . as in Eq. 63;

e Fxtract the input transmission matrix Basin Eq. 64;

e FExtract the input/output matrix D from estimated output covariance AO;

e Solve the corresponding Riccati equation of Eq. 51 using Yxsp = {A,E,C’, 15} to
obtain II; and

e Cualculate R.. and K, from the KSP-equations of Eq. 49.

This completes the development of the output-only subspace identification algorithm,
next we consider the structural dynamics problem of interest for multichannel spectral esti-
mators.

4 Vibrational Systems

Vibrational systems operating over long periods of time can be subjected to anomalies due
to fatigue caused various external forces. Standard approaches to detect anomalous mech-
anisms at the onset range from a simple accelerometer strategically placed to observe the
Fourier spectrum of known response to using cepstral analysis to identify periodic responses.
Measures of anomalies can deteriorate significantly if noise is present - a common situation
in an operational environment. Most of the current monitoring approaches for anomaly
detection and isolation lead to single-channel processing of measured sensor data. Multi-
ple sensors (such as accelerometers for vibrations, microphones for acoustics, strain gauges
for stress and thermocouples for temperature) in a structure provide enhanced information
about the system for condition and performance. This implies that the application of a
multichannel (multi-input, multi-output) system representation is required. This section
is based on developing a model-based signal processing approach to solve the vibrational
system multichannel power spectral estimation problem.

Model-based signal processing for structures involves incorporation of the process model
(large-scale structure), measurement model (wireless sensor network), and noise models (in-
strumentation, environmental, parameter uncertainty, etc.) along with measured data into
a sophisticated processing algorithm capable of detecting, filtering (estimating), and iso-
lating a mechanical fault in a hostile operational environment. The model-based processor
(MBP) provides estimates of various quantities of high interest (modes, vibrational response,
resonances, etc.), as well as on-line statistical performance measures.
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4.1 Single Input/Single Output (5/50) Mechanical Systems

Suppose we have a simple mass (m), damping (c), spring (k), mechanical system (MCK)
driven by an external forcing function. The dynamics of this system can be expressed in
terms of a second-order differential equation in continuous-time 7 as

md(7) + cd(1) + kd(T) = p(7) (66)

This system can also be expressed as a transfer function by applying Laplace transforms
L[d(7)] := D(s) to give

ms*D(s) + csD(s) + kD(s) = P(s) (67)

Factoring out D(s), dividing through by m and solving, leads to the continuous-time transfer
function representation
D(s) 1/m

Hls) = P(s) T2y c/ms+k/m (68)

This simple system can be placed in state-space form by defining the state vector x(7) :=
[d(7) | d(7)]" and rewriting the second-order differential equation of Eq. 66 in terms of two
first-order differential equations as

i1 (1) = x(7)
. k c
da(T) = —%951(7)—%1’2(7)
with output
y(r) = a1(7) (69)
or equivalently in matrix-vector format, we obtain
. 0 -1
OIS I OB
y(r) = [1 O]X(T) (70)

More generally we can express the multiple input/multiple output (MIMO) state-space
system by the quadruple ¥ := (A, B, C, D) given by



where the state-vector is x € R *! the known input excitation is u € R™*! and the
output is y € RY¥»*! with corresponding system matrices given by the state transition matrix,
A € RNe*Nzs the input transmission matrix, B € RY=*Nu output matrix C' € RNz and
the input-output transmission matrix D € RNv*Nu,

From the mechanical system perspective we can also factor the denominator of transfer
function of Eq. 68 and we see that it can be represented equivalently in the generic modal
form and its corresponding partial fraction form as

2R[R]s + 2R[R]o — 2w[R] R N R*
s24+20s+ (02 +w?)  st+o—jw Ss+o+jw
where R[] is the real part of [-], J[] is its imaginary part and R its residue.
Performing the inverse Laplace transform of this relation, we obtain the corresponding

modal representation

H(s) = (72)

H(T) = Re~(r+iw) 4 gre=(o=iw) (73)

with modes or poles given by —o 4 jw and residues or mode shapes by R.
Relating back to a physical system, the generic second-order system (control theory)
has a transfer function of the form

w? w?

() $2 4+ 20wps + w2 (s 4 Cwy — Jwpnv1 — C)(s + Cwy + Jjwnv1 — (?) (74)
where w,, is the undamped natural frequency and ( is the damping ratio of the system. In
terms of our modal interpretation of Eq. 72, we have that

o = (wy

w = wyyl—¢2 (75)

and o is called the damping coefficient with w termed the damped natural frequency. The
system time constant is also defined as
1 1

T, = — —=
R

completing the analogy. Solving the second-order equation using the inverse Laplace trans-
form leads to the real impulse response of a damped sinusoid

H(T) = Kre 7" sin (wr + ¢) = K,e 7 sin (wpy/1 — (27 + ¢) (76)
Now placing the modal model into single-input/single output (SISO) state-space form,
we have
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x(7) = Anx(7)+ byu(r)
y(7) = cux(7)+ dpyu(7) (77)

where the system matrices become [15]

—W; g; 2%[R7«}

which is a special case of the general state-space model that can be extended to multiple
input/multiple output vibrational systems to follow next.

4.2 Multiple Input/Multiple Output (MIMO) Mechanical Systems

Multichannel spectral estimation is based on an “output-only” concept especially in vibration
testing where the input excitation is assumed to be random and uncorrelated (white). Here
we investigate the MIMO formulation of the system and show its direct relationship to the
state-space representation as well as convenient coordinates for analysis.

A linear, time-invariant mechanical system can be characterized by

Md(7) 4+ Cyd(7) + Kd(7) = B,p(7) (78)

where d is the Ny x 1 displacement vector, p is the N, x 1 excitation force, and M, Cy,
K, are the Ny x Ny lumped mass, damping, and spring constant matrices characterizing the
vibrational process model, respectively. The structure of these matrices, typically, take the

form as )
My, 0 0 0 0

0 M2
M = : Do : : , Cy = [C’dij} , and

o
[a)
[a)

(K 4+ Ky —K 0 0 0 ]
_K2 (K2 + K3) 0 0
K= 0 - — Ky, 0
0 0 —Kn,o1 (Kny—1+ Kny) —Kny,
L 0 0 0 _KNd KNd .

If we define the 2N -state vector as x(7) := [ d(r) | d(r) }, then the continuous-time
state-space representation of this process can be expressed as
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0 | I 0
(1) = | ——= | —=—= [x(D+] ——= | p®) (79)
~M7K | —MlCy M™B,

A B

The corresponding measurement or output vector relation can be characterized by

y(7) = Cad(7) + Cyd(7) + Cqad(7) (80)

where the constant matrices: C,, Cy, Cq are the respective acceleration, velocity and dis-
placement weighting matrices of appropriate dimension.
In terms of the state vector relations of Eq. 79, we can express the acceleration vector

as:
d(r) = —-M'Kd(r) — M~'Cyd(r) + M~ B,p() (81)
Substituting for the acceleration term in Eq. 80, we have that
y(7) = =CaM ! [B,p(r) — Cad(7) — Kd(7)] + Cyd(7) + Cad(7)
or

d(7)
y(7r) = [Cd —C, M 'K | Cy — CaMilcd} S CaMipr p(7) (82)
C d(T D
to yield the vibrational measurement as:
y(7) = Cx(7) + Du(T) (83)

where the output or measurement vector isy € R >*! completing the multiple input /multiple
output (MIMO) vibrational model.

Note that sensor models can capture the dynamics of the sensors, as they interact with
the dynamics of the states. For example, in a typical vibrational system, this equation
represents the outputs of a set of accelerometers which are wideband relative to the process
and therefore, simply fixed gains.

4.3 Modal State-Space Model

Perhaps one of the most expository representations of a mechanical system is its modal
representation [4], [5], where the modes and mode shape expose the internal structure and
its response to various excitations. The modal representation of a system can easily be

25



found from state-space systems by transforming the coordinates of the representation to
modal space which is accomplished through an eigen-decomposition in the form of a so-called
similarity transformation such that the system matrices X := {A, B, C} are transformed to
modal coordinates by the transformation matrix 7T, constructed of the eigenvectors of the
underlying system [10],[11], that is,

where we have

{A,B,C,D} I {AM,BM,CM,DM} = {TMATA}I ,TMB, CT]\}l,D}

that yields an “equivalent” system from an input/output perspective, that is, the transfer
functions are identical

H(s) = Cy(sI — App) ' Bay+ Dy = OTyf x (sI =Ty ATy ) x Ty B = C(sI — A)"'B+D

as well as the corresponding impulse response matrices

H(t) = Cye™ By = CTy x Ty Ty x Ty B = Ce™B

It is well-known from systems theory [10], [11] that the solution to the continuous-time,
state-space system of Eq. 71 is given by

x(7) = eAT=T)x (1) + / A=) Bu(a)da (84)
—_—— 70
homogeneous roreod

consisting of the homogeneous and forced solutions from which can define the state transition
matriz for the linear time invariant (LTI) system as

®(7,70) = 7 [State Transition Matrix] (85)

Transforming this solution by performing an eigen-decomposition for distinct (indepen-
dent) eigenvalues leads to a diagonal transition matrix, that is, selecting the modal similarity
transformation 7}, for

SL’(T) :TM XSL’M(T)

satisfying the eigen-equations

A&‘:)\ﬂi for i:1,2,"',Nx

26



where {\;} are the distinct eigenvalues (real and/or complex) of A or equivalently the roots
(modes) of the determinant |[A\I — A| (characteristic equation) [10] and {g;} are the corre-
sponding eigenvectors (mode shapes) that lead to

Tv=le1]ea| -+ | en,)

the modal matrix consisting of independent columns such that

ATy =Ty A

for A = diag[A\1, Ag, -+, An, ]
For this modal system, we have that the modal state transition matrix ®,; follows from
the eigen-decomposition as

Ny

@M(T7 7_0) — TMeA(T_TO)TJQI — 6TMA(T—T0)T]L_11 _ €A(T_TO) _ Z&\ie)\i(T—To)nZ'T (86)
i=1

where we have incorporated the reciprocal eigenvectorss {n!'}; i = 1,---, N, (rows of T};")

to obtain
6)\1 (7—70) 0
(1, 70) = A7) = [MODAL State Transition Matrix]
0 6)\1\;I (t—70)
(87)

In this coordinate system, the modal state solution is:
X (7) = A%, (1) +/ A% Bu(a)da (88)
70

which can be written explicitly for the i**-mode z; as

xi(T) = e’\i(T*TO):UZ-(TO) + /T e)‘i(T*a)bimum(oz)doz fori=1,2,--- Nyym=1,---,N, (89)
70

with by, the (i,m)" component of the input transmission matrix B.
The corresponding measurement or output of the state-space system is easily found by
multiplying Eq. 84 by the measurement matrix C, that is,

yu(7) = Care®T)x(70) + /T Cr e Byu(a)do (90)

which can also be expressed by applying the modal transformation as to obtain the m!-
component of the output y,, as
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Nx Nﬂc T
Yn(T) = Z cr;fie’\i(T_TO) z;(To) + Z/ e T bimum(a)da forn=1,--- N, (91)
i=1 i=1"770

with ¢,; the (n,7) component of the of output transmission matrix C. This is defined as
the modal representation of the system [10].

It is also interesting to note that if we constrain this solution to be only homogeneous,
then the response to the initial (condition) state vector is simply

A(T—70)

xy(T) =€ X (70)

or component-wise, we have

x;(7) = MTx4(70) for i=1,2,---,N, (92)

where motion is expressed in terms of its eigenvalue-the natural frequency of the i**-principal
mode of vibration along with its corresponding eigenvector or mode shape.

Expanding this expression over i leads to the total solution or modal decomposition of
the state-space as

Ny
X (1) = % (1) = 3 (MO0 x,(10) [Modal Decomposition] (93)
i=1
that is, the homogeneous response is represented by a weighted superposition of system
modes ¢;e*(7~7) with the strength of each mode effected by x;(79). Next we discuss the
special case of distinct eigenvalues that are complex.

4.4 Complex Modes

With this in mind, we now extend the modal state-space system of the previous subsection
to the complex modal case which is quite common in structural dynamics [4], [5]. For a
typical structural system, the eigenvalues are complex, but still distinct. In this case the
system matrix can be decomposed, as before, using the eigen-decomposition which now yields
complex eigen-pairs along with the corresponding complex eigenvectors, that is,

)\i = —ai:i:jwi

t, = [&|&] for i=1,2,--- Nyfor N, =2 x Ny (94)

for N; the dimension of the corresponding displacement vector of Eq. 5 and t; the i*"-column
vector of T, with o; is the damping coefficient, w; the damped natural frequency and ¢; the
phase such that
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e 77 X cos (wiT + &) [Damped Sinusoid]

Note that the homogeneous state and output responses are real, since

N, Ny
xp(T) = Z 26_”"(7_70)9%{&(70)} = Z 2¢ i (m=70) |x;(70)| cos (wiT + &) (95)

=1 i=1

We also have that the modal transformation matrix becomes

Tu=6& 168 |&npupl] (96)
and applying this transformation to the system matrix A, we obtain
— A = -1 _ 7q; o wi | ON, WN,
AM—A—TMXAXTM —dl&g([ —wy 011, ’[—WNZ N, ]) (97)

with
By=TyxB;Cy=CxTy}) and Dy =D

which leads to the modal state transition matrix for the complex eigen-system as

Ay 0
Day(r,m) = A0 = exp (r =) for A, = [ o ] (98)
0 Ang o
A
Thus, the complex modal state-space system is given by
x(1) = Anx(7)+ Byu(r)
y(1) = Cux(T)+ Dyu(r) (99)
where the system matrices become
Ay, 0 - 0 B,
0 Ay, - 0
Ay = : : . 0 ; By = : ;CM:{CM1|"'|CMNJ§DM:D
0 o .- AMNI By,
and Ay, = A,

This completes the MIMO modal state-space description that will be utilized in the
model-based processor.
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5 SPECTRAL ESTIMATION OF SIMULATED VI-
BRATION RESPONSE

In this section we study the application the various multichannel spectral estimators to
extract modal frequencies of a vibrating structure represented by a LTI, MIMO, mass-spring-
damper mechanical system consisting of 8-modes or 16-states (see [34] for details) measured
by 3-output accelerometers. The structure is excited by a random input. Structurally, the
system mass (M) is characterized by an identity matrix while the coupled spring constants
in (N/m) are given by the tri-diagonal matrix

[ 2400 —1600 0 0 0 0 0 0
—1600 4000 —2400 0 0 0 0 0
0 —2400 5600 —3200 0 0 0 0
C — 0 0 —3200 7200 —4000 0 0 0
0 0 0 —4000 8800 —4800 0 0
0 0 0 0 —4800 10400 —5600 0
0 0 0 0 0 —5600 12000 —6400
0 0 0 0 0 0 —6400 13600 |

the damping matrix is constructed using the relation (Raleigh damping)

N
C, = 0.680M + 1.743 x 104K <m‘9>

The measurement system consisted of three (3) accelerometers placed to measure the
modes at the 1, 4 and 8 locations on the structure. The accelerometer data is acquired and
digitized at a sampling frequency of 50H z (At = 0.02sec). The input signal from a randomly
excited stinger rod is applied at a specified spatial location such that

Md(t) 4 Cad(t) + Kd(t) = B,p(t)

Three accelerometer outputs of the synthesized vibrating structure at a 0dB SNR were
recorded for 200 sec with the vibrational responses shown in Fig. 1 along with their corre-
sponding power spectra where we see a persistently excited system ideal for spectral estima-
tion. The set of “true” modal frequencies corresponding to the spectral peaks are:

frrue = {2.94,5.87,8.60,11.19,13.78,16.52,19.54,23.12 Hz}

The 3-accelerometer channels were processed by the multichannel classical spectral es-
timators: BTM and WPM with the output channel estimates shown in Fig. 2 and 3. Phys-
ically, some of the modes were not strongly excited at a given accelerometer location and
therefore may not appear in the corresponding channel spectra. This implies that multi-
channel processing should provide superior performance in this case, since weak modes over
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Measurement Channel No. 1: SNR = 2.6067 dB. Channel No. 1: Power Spectrum
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Measurement Channel No. 2: SNR = 2.6067 dB. Channel No. 2: Power Spectrum
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Measurement Channel No. 3: SNR = 2.6067 dB Channel No. 3: Power Spectrum

Amplitude

Figure 1: Structural vibrations of 8-mode mechanical system: (a) Accelerometer responses
of 3-output system (0db SNR). (b) Fourier power spectra of channel responses.

measurement channels accumulate their response and improve the signal levels. In any case
the spectral estimates are shown in Fig. 2 and Fig. 3 for each technique. It is clear that
the BTM has a much higher variance and the peaks are difficult to extract even though the
power is present at the correct modal frequencies. The WPM estimate is much smoother
than BTM (as expected), but its peak resolution is smeared decreasing spectral resolution.
Four (4) of the 8 modal frequency peaks are clearly discernible. The classical multichannel
methods are viable, but lack the high resolution capability of the parametric techniques to
follow.

The multichannel Yule-Walker (YWM) spectral estimation results are shown in Fig.
4 with more of the spectral peaks extracted than the classical BTM and WPM methods.
These modal peaks are primarily extracted because of its underlying 20*"-order multichannel
autoregressive (all-pole) model embedded in the method. However, the peak estimates are
somewhat inaccurate as summarized in Table 1 (with large outliers ignored and annotated
by the asterisk). Next the high resolution family of multichannel Burg-lattice methods were
applied to the synthesized structural data with more success as shown in Fig. 5 for the
Morf-Viera method [21] and the Nutall method [22] of Fig. 6. Both 16™-order, embedded,
multichannel AR-models yield almost identical spectra (see the figures) as indicated by the
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Figure 2: Multichannel Blackman-Tukey Method (BTM) Power Spectral Density Estimates
for 8-mode, 3-channel structure.
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Figure 3: Multichannel Welch Periodogram Method (WPM) Power Spectral Density Esti-
mates for 8-mode, 3-channel structure.
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Figure 4: Multichannel Yule-Walker Method (YWM) Power Spectral Density Estimates for
8-mode, 3-channel structure.
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Figure 5: Burg Lattice Morf-Viera Method (BLMorfV) Power Spectral Density Estimates
for 8-mode, 3-channel structure.

plots and results in Table 1. Next the multichannel minimum variance method (MVM) was
applied to the data using a 20""-order model assumption with the spectral (peak) estimates
shown in Fig. 6 and Table 1. The MVM appears to perform similarly to the Burg-lattice
methods as indicated by the modal frequency estimates.

Finally, we applied two model-based, state-space methods: N4SID and its fast con-
strained counterpart. The Numerical method 4 Subspace system IDentification (N4SID)
is a FULL stochastic realization solution extracting the complete innovations model (X;yv)
of the previous section, while the constrained method, based on the “output-only” method,
is focused on exclusively estimating the process/output components {A, C} of ¥;yy. Both
methods employ projection theory and extract the modal eigen-frequencies from A and corre-
sponding mode-shapes from C' (see [26] for more details). Here the assumed excitation is the
innovation or prediction error sequences, therefore, the estimated model admits a 3-input/3-
output representation yielding 9 spectra composed of individual channel (diagonals) as well
as cross-spectra (off-diagonals). The spectral estimation results for the FULL (stochastic
realization) and FAST (constrained) model-based methods (MBM) are shown in Figs. 8 and
9 as well as the eigen-frequencies in Table 1 for comparison. Both methods yield close to
identical modal frequencies; therefore, we only list one set of the MBM results. From the
figures, it is interesting to observe the MBMs are able to extract the 8-modal frequencies on
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Figure 6: Burg Lattice Nutall-Strand Method (BLNutS) Power Spectral Density Estimates
for 8-mode, 3-channel structure.
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Figure 7: Minimum Variance Method (MVM) Power Spectral Density Estimates for 8-mode,
3-channel structure.
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all of the channels as indicated by their corresponding spectra obtained by calculating the
model (modal) impulse responses for each of the input-output pairs (channels). The results
for the FAST MBM are shown in Fig. 9 illustrating the estimates channel/cross-channel
impulse responses and the “average” spectrum. The strongest responses appear from the
3r%-channels accelerometer measurements in which all-modes appear excited. Comparing
the averaged the extracted modal frequencies for both the FULL and FAST MBMs in Fig.
10, we see that they are quite similar (see Table 1) and capture the essence of the modal

responses implying that a potential real-time approach may be feasible.

Table 2.0 MULTICHANNEL SPECTRAL ESTIMATION (Channel) STATISTICS

MODAL Frequency Estimates (% Relative Error(e))
Frequency BTM WPM YWM BLMorfV | BLNutS MVM MBM
2.94 Hz 2.95(0.3) | 2.95(0.3) | 1.95(33.7) | 2.97(1.0) | 2.98(1.4) | 2.98(1.4) | 2.98(1.4)
- 2.01(1.0) | 2.94(0.0) | 2.94(0.0) | 2.97(1.0) | 3.00(2.0) | 2.94(0.0) | 2.98(L.4)
- 2.05(0.3) | 2.94(0.0) | 2.94(0.0) | 2.94(0.0) | 2.07(1.0) | 2.98(1.4) | 2.93(0.3)
587 Hz | 5.90(0.5) | 5.87(0.0) | 5.33(9.2) | 5.85(0.3) | 5.87(0.0) | 5.80(1.2) | 5.91(0.7)
- 5.90(0.5) | 5.86(0.2) | 5.86(0.2) | 5.88(0.2) | 5.82(0.9) | 5.86(0.2) | 5.91(0.7)
- 5.86(0.2) | 5.90(0.5) | 5.90(0.5) | 5.87(0.0) | 5.87(0.0) | 5.85(0.3) | 5.36(8.7)
8.60 Hz | 8.59(0.1) | 8.59(0.1) | 7.43(13.5) | 8.66(0.7) | 8.63(0.4) | 8.57(0.4) | 8.60(0.0)
- 8.60(0.0) | 8.60(0.0) | 8.60(0.0) | 8.63(0.4) | 8.60(0.0) | 8.60(0.0) | 8.65(0.6)
- 8.57(0.4) | 8.59(0.1) | 8.59(0.1) | 8.64(0.5) | 8.64(0.5) | 8.63(0.4) | 8.60(0.0)
11.19 Hz | 11.15(0.4) | 11.17(0.3) | 11.34(1.3) | 11.16(0.3) | 11.16(0.3) | 11.09(0.9) | 11.29(0.9)
- 11.15(0.4) | 11.15(0.4) | 11.15(0.4) | 11.16(0.3) | 11.11(0.8) | 11.15(0.4) | 11.34(1.3)
- 11.19(0.0) | 11.19(0.0) | 11.19(0.0) | 11.20(0.9) | 11.21(0.2) | 11.19(0.0) | 11.19(0.0)
1378 Hz | 13.79(0.1) | 13.80(0.2) | 14.82(7.6) | 13.79(0.1) | 13.80(0.2) | 13.99(0.0) | 13.88(0.0)
— 13.79(0.1) | 13.80(0.2) | 13.80(0.2) | 13.78(0.0) | 13.75(0.2) | 14.16(2.8) | 13.98(1.5)
- 13.81(0.2) | 13.79(0.1) | 13.79(0.1) | 13.79(0.1) | 13.79(0.1) | 13.91(0.9) | 13.78(0.0)
1652 Hz | 16.61(0.6) | 16.58(0.4) | 16.58(0.4) | 16.51(0.1) | 16.48(0.2) | 17.08(3.4) | 16.76(1.5)
- 16.56(0.2) | 16.58(0.4) | 16.58(0.4) | 16.56(0.2) | 16.56(0.2) | 16.76(1.5) | 16.62(0.6)
- 16.57(0.3) | 16.60(0.5) | 16.60(0.5) | 16.59(0.4) | 16.58(0.4) | 16.81(1.8) | 16.57(0.3)
1954 Hz | 19.59(0.3) | 19.61(0.4) | 19.61(0.4) | 19.75(1.1) | 19.69(0.8) | 19.99(2.3) | 19.89(1.8)
- 19.59(0.3) | 19.61(0.4) | 19.61(0.4) | 19.54(0.0) | 19.61(0.4) | 19.18(0.0) | 19.89(1.8)
- 19.61(0.4) | 19.61(0.4) | 19.61(0.4) | 19.67(0.7) | 19.67(0.7) | 19.89(1.8) | 19.65(0.6)
23.12 Hz | 23.07(0.2) | 23.08(0.2) | 23.08(0.2) | 23.49(1.6) | 23.45(1.4) | 23.76(2.8) | 23.61(2.1)
— 23.08(0.2) | 23.08(0.2) | 23.08(0.2) | 23.46(1.5) | 23.42(1.3) | 23.82(3.0) | 23.56(1.9)
— 23.06(0.3) | 23.08(0.2) | 23.08(0.2) | 23.45(1.5) | 23.34(1.0) | 23.48(1.6) | 23.17(0.2)
Avg (%e) | (0.30%) | (0.26%) | (0.35%%) | (0.54%) | (0.60%) | (L.19%) | (0.86%)
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Figure 8: FULL (stochastic realization) Model-Based Method (N4SID) Power Spectral Den-
sity Estimates for 8-mode, 3-channel structure.
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Figure 9: FAST Model-Based (Constrained) Method Power Spectral Density Estimates for
8-mode, 3-channel structure.
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Figure 10: FAST Model-Based Method (N4SID) Estimates for 8-mode, 3-channel structure.
(a) Impulse response (modal) estimates. (b) Average spectral estimate (modal frequencies).
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Figure 11: COMPARISON FULL/FAST Model-Based Method (MBM) Estimates for 8-
mode, 3-channel structure: Average Power Spectra with Average modal frequency estimates.
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6 SUMMARY

In this report we have investigated the performance of “classical” multichannel spectral esti-
mation techniques. We chose the two most popular and well-known techniques: Blackman-
Tukey method (BTM) and Welch Periodogram (average) method (WPM). Along with these
methods, we investigated a suite of “modern” parametric estimators based on the multi-
channel autoregressive model as well as the model-based state-space representation. The
classical and A R-models provided reasonable estimates for the 0dB SNR test case evolving
from a synthesized 8-mode, 3-output, structural system that was developed to evaluate the
performance of each method. From the respective multichannel estimates, the classical as
well as the modern methods produces noisy spectra while the corresponding model-based
approaches were much smoother with very well defined modal frequences. It was surprising
that the calculated relative errors of Table 1 did not reflect the superiority of the MBM
although all of these errors were < 2% indicating a set of reasonable results. Note that
the corresponding frequencies were all determined by visual peak-picking that created some
of the uncertainty especially when the spectral peaks were not well-defined. The MBM,
however, obtain the modal frequency estimates directly from the corresponding embedded
state-space models probably indicating a more realistic set of relative frequency errors. The
final conclusion is that the classical, modern and model-based methods can be used to provide
reasonable multichannel spectral estimates, but that real-time implementation still poses a
great challenge.
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