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3 I Motivation

Full-field strain response measurements are of great importance for:
Analytical model validation

• Characterization of test article for which there is no finite element model (FEM)

• Determination of environmental test boundary condition suitability

• Does your test stress your part the same way it is stressed in a real system and environment?

• Optical measurement methods have opened this possibility in recent history

• Laser Doppler Vibrometry (LDV)

• Digital Image Correlation (DIC)

• A mode-based model of full-field strain shapes would be advantageous
• Can assess the contributions of individual modes to total strain field/damage

• Calculate full-field strain response to a given environment without additional FEM analyses

• Desire to use the 3D Scanning LDV system to acquire full-field strain shapes

• Mode-based model for full-field strain response



4 I Test Structure: Background

• Box Assembly with Removable Component (BARC)

• Test bed structure currently being used to explore the effects of boundary conditions in environmental tests

• As seen at IMAC, ESTECH, etc. ;



5 I Test Structure

• Test article for this work comprises:
• Removable Component (bench)

On vibration fixture plate

Attached to 7" vibration test cube

• To stiffen the fixture plate Bench

Fixture Plate

7" Vibe Cube



6 I LDV Test Setup

• Polytec PSV-500 Xtra (IR) 3D-SLDV system

• Two mirrors used to scan three sides of test article without changing configuration

• Test article supported on foam to approximate free-free boundary condition



7 I LDV Test Setup

Two types of tests were performed:
Random Excitation

• Obtain displacement mode shapes and
natural frequencies (E , to)

• Sine-Dwell Excitation

• Obtain operational deflection shapes (ODS)
at selected frequencies (0 , f)

• Sine dwell at resonance frequencies determined
from Random modal test

Test

Vibrometer Settings

Measurement

Bandwidth (Hz)

Sample

Rate (Hz)
Lines Af (Hz) Averages

Signal

Enhance

Speckle

Tracking

Random 1-6400 16000 6400 1.0 50 Standard Enabled

Sine Dwell 1-6400 16000 6400 1.0 100 Standard Enabled

Test

Excitation

Signal Type Window
Excitation

Bandwidth (Hz)

Random Random Hann 10-6400

Sine Dwell Sine Dwell None Resonance Tones

1



8 Initial FEM Correlation

*Very good initial correlation to test data

MAC

1

1 0.02

2

0.18 0.08 0.00 0.02 0.08 0.02

8

0.03

9

0.05

10

0.05

2 0.16 0.01 0.03 0.02 0.18 0.02 0.00 0.04 0.00 0.09

3 0.07 0.09 0.27 0.00 0.02 0.10 0.01 0.00 0.03 0.03

4 0.48 0.02 0.02 0.34 0.01 0.00 0.09 0.10 0.03 0.03

3
 5 0.00

6 0.22

iffi, 99

■ 0.03

FT 0.00

lig 0.10

IF 0.01

1.2 0.00

0.18 0.58 0.01 0.01 0.20 0.00 0.01 0.13 0.03

0.01 0.00 0.03 0.38 0.00 0.00 0.14 0.00 0.28

0.02 0.00 0.14 0.01 0.00 0.05 0.00 0.00 0.04

0.95 0.02 0.03 0.00 0.16 0.02 0.00 0.07 0.00

0.17 0.95 0.04 0.01 0.10 0.00 0.02 0.09 0.01

0.03 0.00 0.95 0.00 0.02 0.02 0.01 0.04 0.04

0.01 0.01 0.07 0.93 0.01 0.00 0.03 0.01 0.11

0.19 0.12 0.02 0.00 0.99 0.01 0.01 0.20 0.00

13 0.05 0.03 0.00 0.01 0.01 0.00 0.98 0.01 0.00 0.00

14 0.00 0.12 0.09 0.08 0.01 0.21 0.00 0.11 0.97 0.00

15 0.01 0.12 0.08 0.07 0.00 0.22 0.00 0.02 BINI 0.02

16 0.05 0.00 0.01 0.04 0.17 0.00 0.01 0.08 0.01 0.96

17 0.04 0.15 0.04 0.04 0.00 0.22 0.06 0.01 0.20 0.00

18 0.06 0.02 0.04 0.15 0.00 0.07 0.03 0.07 0.24 0.04

Rigid Body Modes



Process and Tools
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11 Road Map:Tools
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1 2 I Tools: Gaussian Spatial Filter

Raw displacements from the scanning laser system tend to be noisy, and the derivative in the strain
computation exacerbates this noise

Low-pass filtering is used to smooth the data prior to calculating strain.

A 2D gaussian function with a given size (6) is used to perform a weighted average of the displacements
around the point.

d3 —

d1 d2 d3 d4

W1 d1 + W2 d2 + W3 d3 1414 d 4 + 14/5 d 5

+ w2 + w3 + w4 + ws
Ei Widi 
Ei wi

Filter Description
Filter weights in 3D Raw shape Filtered shape



13 Tools: Strain Post-Processor

Polytec Strain Post-processor operates on Band Data within scan files.
In order to directly compute strain from an arbitrary shape (mode shape, ODS, environment time step), it would
need to be packaged into the scan file for the Polytec Strain Post-processor to operate on it.

Rather than dealing with Polytec's software, a new atlab-based Strain Post-Processor was written:

Extracts geometry and mesh connectivity from the scan file to create elements

Extracts nodal displacements from the scan file to deform the elements

Utilizes bilinear quadrilateral element (Q4) formulation to compute strain at various points on each element

We compute strain at the center (x, y) = (0,0) of each element, interpolate to points common to FEM for
comparison.

4: (-1,1) 3: (1,1)
-•
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aNi aN2
0 0 • • •
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14 I Tools: SEREP

System Equivalent Reduction/Expansion Process (SEREP) [1]

Method championed by Pete Avitabile at University of Mass. Lowell

• Shape vectors are used as the transformation basis (opposed to M, K matrices)

- Select which DOF and modes you want to retain

Can preserve arbitrary set of modes of interest

. Insensitive to the number and location of DOF retained

• n-Space = full DOF set

• a-Space = reduced DOF set

• U = Analytical Shape (FEM)

• E = Experimental Shape

[n,a] [n,m] [m,cd

Transformation Matrix T= UnUci+
Expanded Test Shapes En = TE,,

It's simple!
But the devil is in the details...

1
1

1
1

I

[1] System Equivalent Reduction Expansion Process (SEREP), J.O'Callahan, P.Avitabile, R.Riemer, Seventh International Modal Analysis Conference, Las Vegas, Nevada, February 1989



1 5 Tools: SEREP

• Need to keep analytical rigid body modes

• Keeping too many DOF can lead to expansion problems
• Including noisy DOF degrades the best fit

• Need to keep more DOF than the number of preserved modes (a> m)

• Analytical modes kept need to span the space of the test modes
• Analytical modes dominated by components that were not measured in test will cause issues in expansion

• FEM doesn't have to be perfect...but can't be totally off

(a)



16 I Tools: SEREP

• Experimental test shapes expanded to full FEM space:

1: 414 Hz 2: 1076 Hz

6: 2855 Hz 7: 4039 Hz

3: 1204 Hz

8: 4799 Hz

4: 1724 Hz

9: 5228 Hz

5: 2006 Hz

10: 5515 Hz



17 Tools: SEREP

• Examples of test shape with less than perfect expansions...
• Basis vectors (FEM shapes) don't quite span the space of certain experimental shapes we're trying to expand

• Still very useful

Mode 5

1:isp Magnitude
-9.359e+01

70.203

46.818

23.432

=4.702e-02

1111=111111  

Mode 10

Disp Magnitude
-7.474e+01

56.07

37.395

18.721

=4.648e-02

•



18 I Tools: SEREP

Test shapes can be transformed/expanded using other modal quantities

Direct to full n-space modal strain shapes, using FEM strains

Tn = En Ua+ E a

Direct to measurement a-space modal strain shapes, using ODS shapes and strains

+Ta — T0 ac,.  E a

• SEREP can also be used as a least squares error minimization

• Use to smooth noisy measured mode shapes using (potentially) cleaner ODS (higher signal-to-noise)

EQ = tias-ti;,+E a
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20 Road Map: Direct Methods
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21 Road Map:Transformation Methods
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22 Road Map: Direct Methods
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23 Road Map: Direct Methods
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24 Road Map:Transformation Methods
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25 Road Map:Transformation Methods
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LDV Direct Methods

FEM? We don't need no stinking FEM...



27 Direct Method Results
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28 I Direct Method Results

• Gaussian filters of 0.5-3.5 mm were evaluated
• 0.5 mm is essentially "unsmoothed"

• Element size: 1.6 x 2.6 mm (horizontal, vertical)

• Comparison plots were made for the Surface Strains on the two C-channel faces

• X-Face: (yy, yz, zz)

• Z-Face: (xx, xy, yy)



29 Direct Method Results: ODS - Raw & Filtered
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8
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LDV Transformation Methods

Maybe we need a FEM...



32 Transformation Method Results
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33 Transformation Method Results: ODS

• Sine Dwell Test:

- Extracted 10 ODS

• 2202 DOF

Kept all measured DOF (a-set)

Retained all 10 ODS

Two variations:

• Use ODS as basis vectors for SEREP smoothing for ha

• Use ODS and ODS-derived strain shapes as basis vectors for SEREP transformation to Ta

Strain Post-
Processor

Both variations can be shown to
be mathematically identical
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35 I Transformation Method Results: Modal

• FEM:

• Delivered with 300 modes

• 127,155 DOF

Modal Test:

Identified 10 modes

2,202 DOF

•Take full n-Space FEM shapes ((In), reduce to a-Space set of DOF (Ua)

• Kept 2x(Number of Test Shapes) = 20 DOF for reduction (a-set)

• Retained first 18 analytical modes of the FEM

• Important to include analytical rigid body modes

- Important to exclude analytical modes of things you didn't measure (cube)
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3 6 Transformation Method Results: Modal
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37 I Sidebar: Surface vs.Volume Strain

The Scanning Laser Vibrometer measures
strains at the surface of the test article.

• Surface strains may vary significantly from
volume strains reported by the FEM
depending on the mesh resolution.

In the case of BARC, with only two
elements through the thickness, the
maximum surface strains were
approximately twice the maximum
volume strains.

Volume Strain usually computed
at element center, but may
underestimate true max strain.

Maximum strain may
occur at the surface of

the test article

Volume Strain Surface Strain



38 LDV SEREP Methods: Modal Expansion

Expansion works well for
volume strain as well

Anticipated result

• Different tool to have

Finite Element Model

11.7\ 44.

MEM

VStrainY
4,000e+0(

Expanded Experimental

VStralnY
—4.000e+0

—2

I o o

--2

-4.000e+C

--2

-4.000e+

VStrain-Y gradient plotted over 1st bending mode displacement



Comparison of Methods

We probably need a FEM...



40 Comparison of Methods
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41 Comparison of Methods
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42 I Comparison of Methods

• Direct ODS have different
displacement range than modal
• Strains are scaled differently than
modal quantities

• Sign is opposite on ODS [2, 4, 6]

Direct Modal works reasonably
well, no FEM is needed

• Transform ODS puts you into
modal domain and helps order
and clean the shapes

• Transform Modal works very
well overall, requires a FEM
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43 I Comparison of Methods

• If you have a decent FEM, would recommend trying Transformation Modal Method
• Best overall performance

• Smooth modal model for strain response

• If you don't have a FEM, would recommend Direct Modal
• For more linear structures with well-spaced modes, Transformation ODS method may work better

(possibly better SNR)

• For structures with closely spaced modes, Direct Modal will give a better basis for a strain-response
modal model

Neither of the above approaches fit well within the current Polytec strain post-processor

• Things that are not recommended:
Using Direct LDV measurements (ODS or Mode Shapes) without appropriate filtering

Assuming you don't need a FEM

Assuming your FEN: is correct

- Assuming you don't need a modal test

• Assuming your modal test is correct
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47 I Observations:Things that helped that may not always be true...

• Initial correlation of FEM was very good
• Analytical shapes span space of test shapes

• Sensitivio of these methods to a poor/y correlated FliM?

• Test structure has shapes that are well separated in frequency

• ODS are good approximations of the mode shapes

• How well do ODS methods work with closely spaced modes?
MAC

FEM

1 2 3 4 5 6 7 8 9 10

2 0.99 0.03 0.00 0.15 0.01 0.00 0.06 0.00 0.00 0.05

3 0.02 0.99 0.11 0.02 0.01 0.17 0.03 0.00 0.08 0.00

4 0.00 0.09 0.95 0.01 0.03 0.09 0.00 0.00 0.04 0.01

5 0.11 0.02 0.01 0.99 0.02 0.01 0.02 0.02 0.06 0.02

vd 7 0.00 0.00 0.00 0.01 0.95 0.00 0.00 0.04 0.01 0.17

0 8 0.01 0.15 0.10 0.03 0.01 0.88 0.00 0.00 0.13 0.01

9 0.05 0.04 0.00 0.01 0.00 0.00 0.99 0.02 0.00 0.00

10 0.00 0.01 0.02 0.02 0.05 0.01 0.01 1.00 0.14 0.11

11 0.00 0.10 0.06 0.07 0.01 0.19 0.00 0.08 0.98 0.01

12 0.05 0.01 0.02 0.02 0.17 0.00 0.00 0.12 0.00 0.98



48 I Observations: Nonlinearity

• There was significant noise in the first few shapes that could not be cleaned up by averaging

• This was thought to be due to nonlinearities in the test article
• Perhaps due to the joints in the removable component

• In many experimental and FEM shapes these joints can be seen separating

1 



49 I Observations: Nonlinearity

• These nonlinearities are thought to be the
reason that the sine dwell testing did not
produce better strain results than computing
the strain directly from the mode shapes

Playing a sinusoidal excitation force into the
shaker resulted in non-sinusoidal responses with
significant harmonics that got worse as the level
increased.

The non-sinusoidal behavior was repeatable and
therefore could not be corrected by averaging.

At some DOF, the noise floor of the laser was
reached before the harmonics disappeared.

• Strangely, points next to each other seemed to
have significantly different responses, but they
were completely repeatable.

10
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Future Work



51 Future Work

Add 3D DIC strain measurements to this comparison
Same test article and configurations

• Use this work to establish a modal-based full-field strain model
• Analytically apply an environment to modal model and calculate full-field strain response

• Compare to FEM predictions for same environment

• Experimentally apply environment to test article

• Use modal filters to extract modal coefficients, multiply by strain shapes

• Get strain response for each mode, total response is linear superposition

• Compare to FEM strain response predictions

Apply method to other structures!
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