

SAND2019-0222PE

Information Management System for a Generic Nuclear Waste Program Based on Cloud Technology

Presented at the Nuclear Energy Agency Offices, Boulogne-Billancourt, France
January 23, 2019

Evaristo J. Bonano, Janette Meacham
Sandia National Laboratories

Generic Nuclear Waste Program: Plan for Efficient IDKM in the Cloud

- Background on the project
- Developing tools for capturing, preserving and transferring technical information
- Capturing and preserving tacit knowledge
- Understanding and replicating the processes to use the captured information
 - Understanding and documenting how the information was used in the past
 - Replicating functions, especially as technology changes
- Dedicating the necessary resources for maintaining and updating the information systems

United States Federal Requirements

Nuclear Regulatory Commission (NRC) Regulatory Requirements

- NRC Information collection requirements are binding on all persons and organizations who apply for or receive a license from NRC to use nuclear materials or operate nuclear facilities
 - Management Directive 3.53 - NRC Records and Document Management Program
 - NUREG – 0910, Rev 4 NRC Comprehensive Records Disposition Schedule

National Archive and Records Administration (NARA)

- 36 CFR, Subchapter B, Records Management
 - NARA specifies policies for Federal agencies' (including the Department of Energy (DOE)) records management programs relating to proper records creation and maintenance, adequate documentation, and records disposition
 - Federal agencies are responsible for establishing and maintaining a records management program

General Services Administration (GSA) Federal Regulations

- GSA Order - OAS P 1820.1, Records Management Program
 - This Directive establishes principles, authorities, responsibilities, and requirements for managing GSA's records

Challenges & Needs for Efficient IDKM

- Codification of tacit knowledge
- Key individuals with critical institutional knowledge approaching retirement or move to other projects
- Suspended project does not provide a means for continuous knowledge transfer
- Data and systems in cold standby on an isolated local area network
 - Occasionally used to respond to requests for information, but not on a continuous basis
- Existing hardware is not up to today's IT technology; many manual processes

Status of IDKM for the Project

- What We've Done During the Project's Hiatus:
 - Kept key individuals readily available while engaged in related generic R&D to the extent practicable
- Current Activities:
 - Developing a cloud-based environment to house the archived information and systems to make the data easy to access and automate manual processes
 - Developing workshops and videotapes involving both senior staff and early career staff with open discussion

Lessons Learned

- Knowledge management needs to be a deliberate effort with adequate resources
- Requires both technical experts that develop and used the information and understand the interconnectivity between different types of information, as well as IT experts working as an integrated team
- It is a challenge to keep hardware and software updated during a hiatus in a nuclear waste management project; It can be very costly
- Making changes to IDKM systems in a highly regulated environment can be difficult

Q&A

- Questions/Discussion