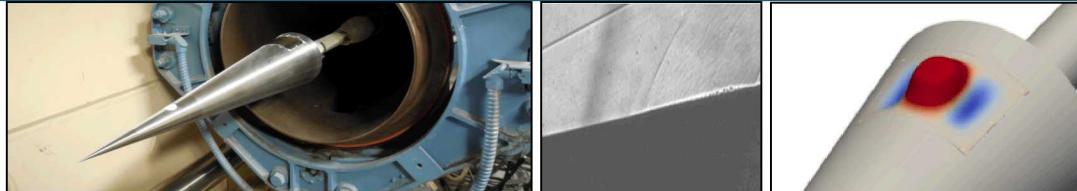
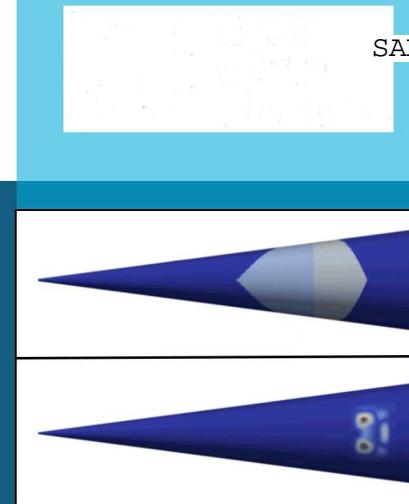


Quantifying the Structural Response of a Slender Cone to Turbulent Spots at Mach 6



PRESENTED AT

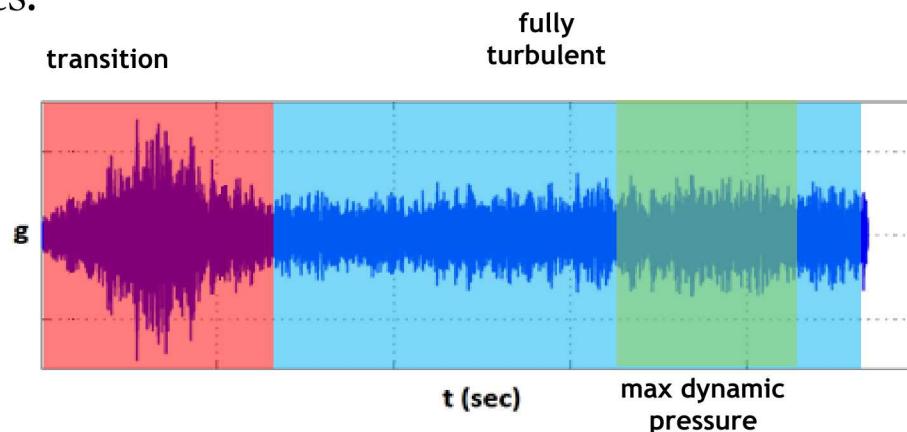
2019 AIAA SciTech
January 7th-11th, 2019
San Diego, CA

AUTHORS

B. A. Robbins, K. M. Casper, P. Coffin,
M. Mesh, R. V. Field Jr., and M. Grigoriu

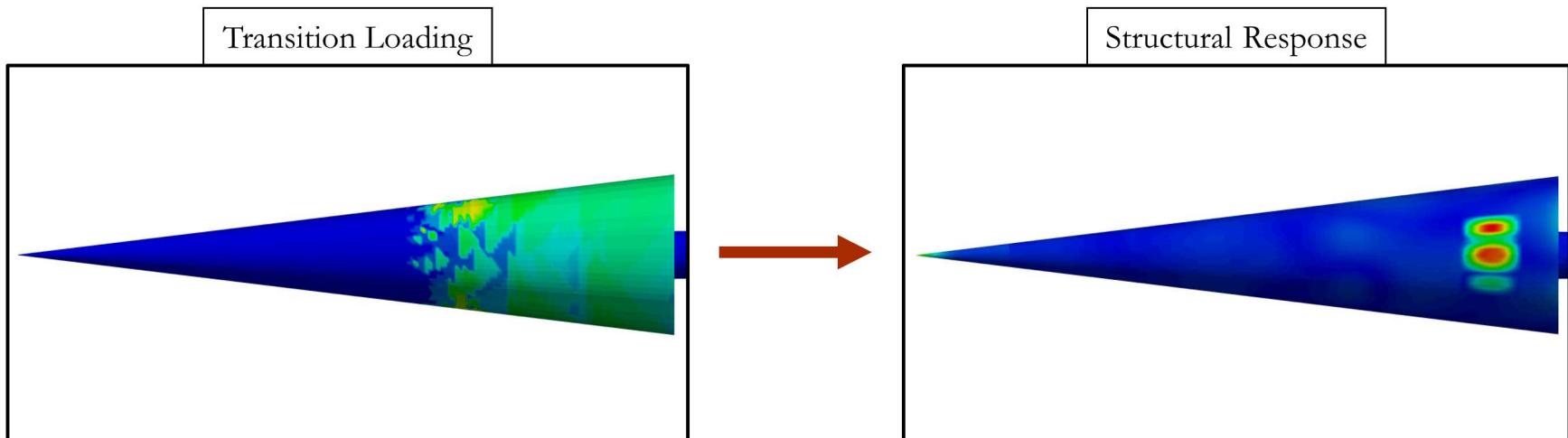
Introduction

- In order to appropriately quantify the response of an aerospace vehicle undergoing transitional flow, it is important to account for phenomena that may influence the dynamics of the structure;
- Turbulent spots are formed within the boundary layer during transitional flow;
- These spots subject the structure to severe pressure fluctuations,
 - Pressure fluctuations during transitional flow can be larger than during fully turbulent flow;
 - Results in random vibration of the structure and its internal components.



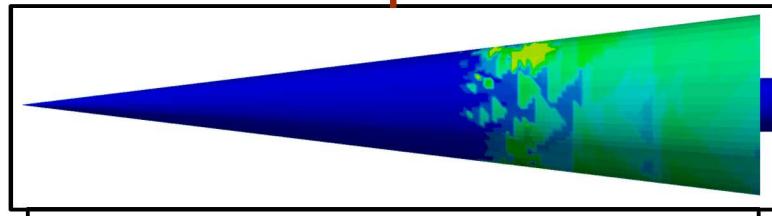
Introduction Cont.

- The resulting vibration can yield structural problems;
- We seek to model the phenomena associated with random turbulent spots and transitional behavior that lead to structural response.
- Model can be used to better design aerospace vehicles for flight conditions;

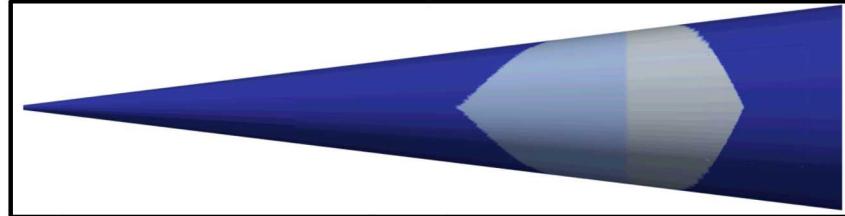


Introduction Cont.

Simplify problem to this!



Random Loading, Natural Transition



Periodic Spot Forcing

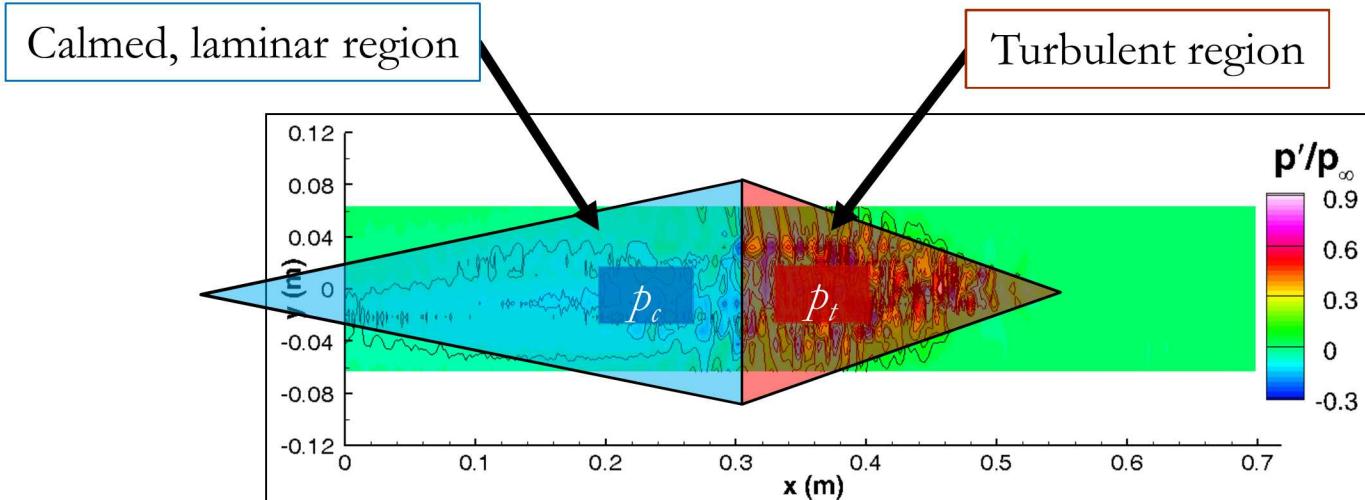
- Develop a deterministic model that describes the birth, evolution, and pressure loading of turbulent spots born at a given forcing frequency, f_f ,
 - Calibrate and inform model using experimental data;
 - Compare results with experiments conducted by Casper *et al.*¹
- This will allow us to tune our structural model,
 - For example, structural damping.
- Study the affect of the fluid model parameters,
 - Convection velocity;
 - Half-spread angle;
 - Time between spot events.

¹Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W., Hunter, P., and Spitzer, S., "Hypersonic fluid-structure interactions due to intermittent turbulent spots on a slender cone," Accepted for Publication in AIAA Journal, September 2018.

Turbulent Spot Pressure Loading

Transitional pressure loading is generated by intermittent turbulent spots in the boundary layer.

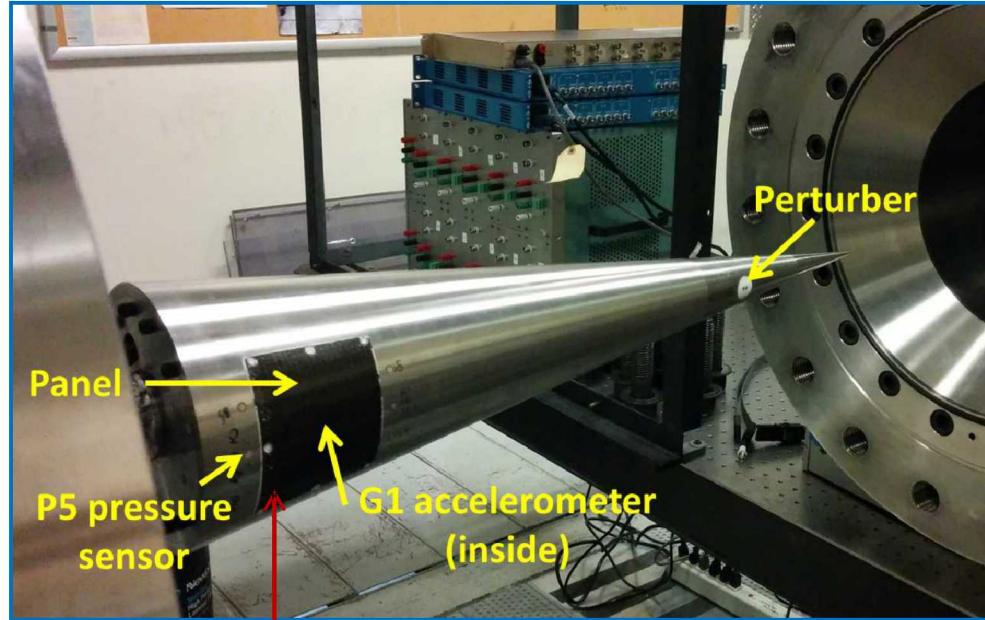
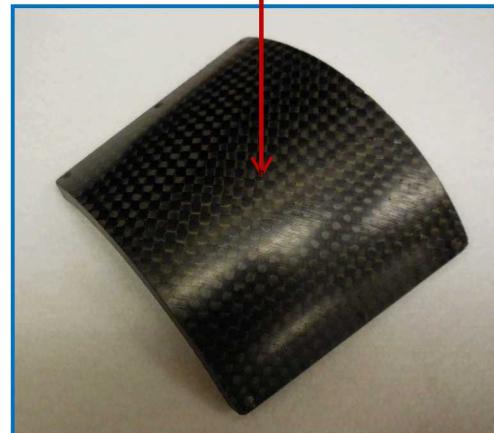
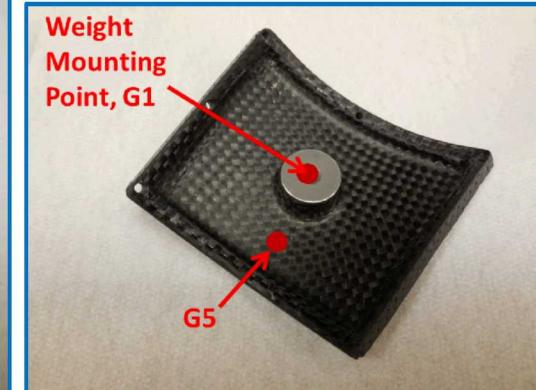
- We model these spots as isosceles triangles with conjoined base;
- The turbulent and calmed regions are assumed to be constant values that are the mean pressure fluctuation for that region.



Pressure footprint of turbulent spot, Mach 6

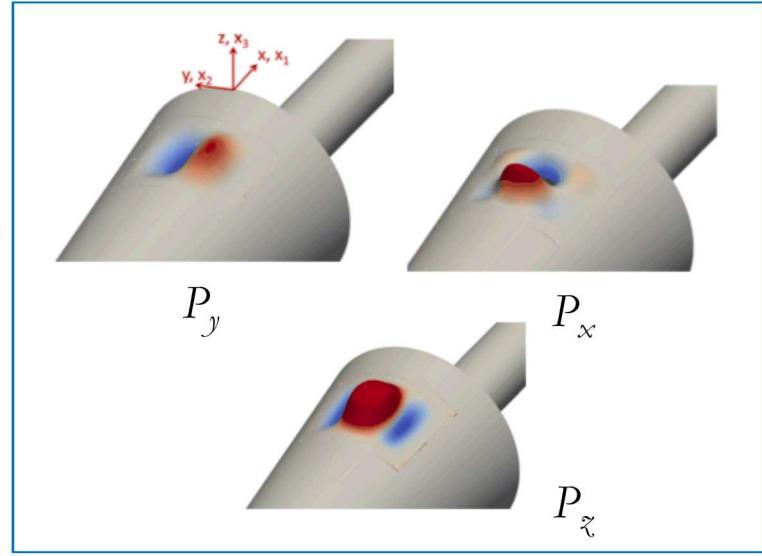
Work of Casper et al.: Brief Experiment Overview

- Designed a cone with integrated thin panel that will vibrate from flow excitation,
 - Panel response measured with accelerometers on inside of panel;
 - Boundary layer was characterized using pressure sensors upstream and downstream of panel.
- A spark perturber was used to create isolated or periodic turbulent spots in the boundary layer;
- Experiments conducted at the Purdue BAM6QT quiet tunnel.



Work of Casper et al.: Brief Experiment Overview Cont.

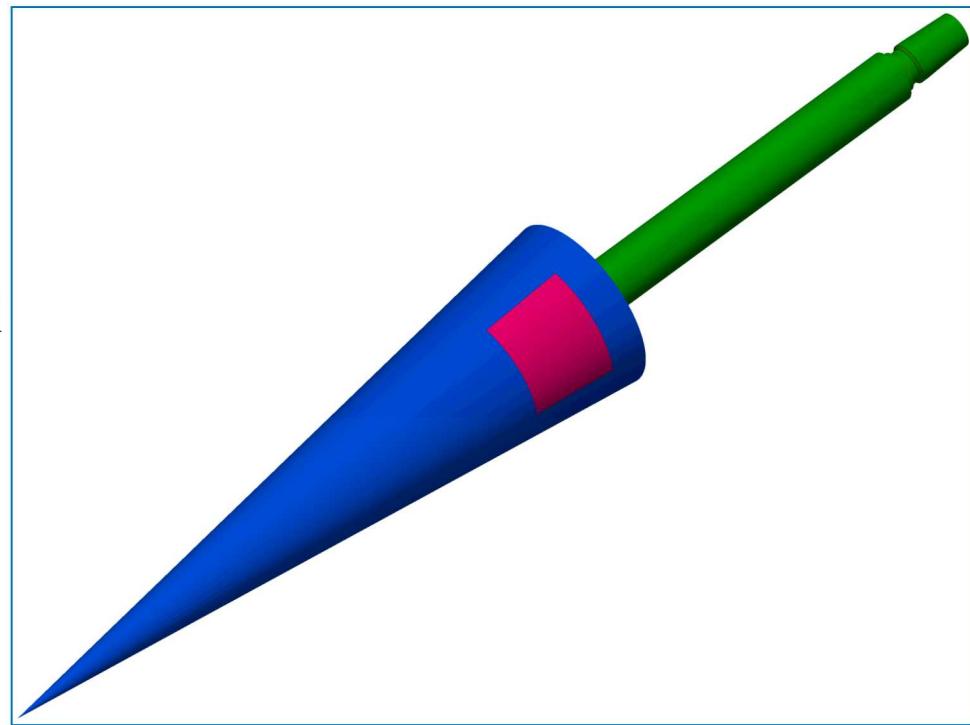
- Hammer test was performed to determine the structural natural frequencies of the panel and model,
 - Measure structural response to a known input;
 - Also characterized mode shapes.
- Modes of interest are,



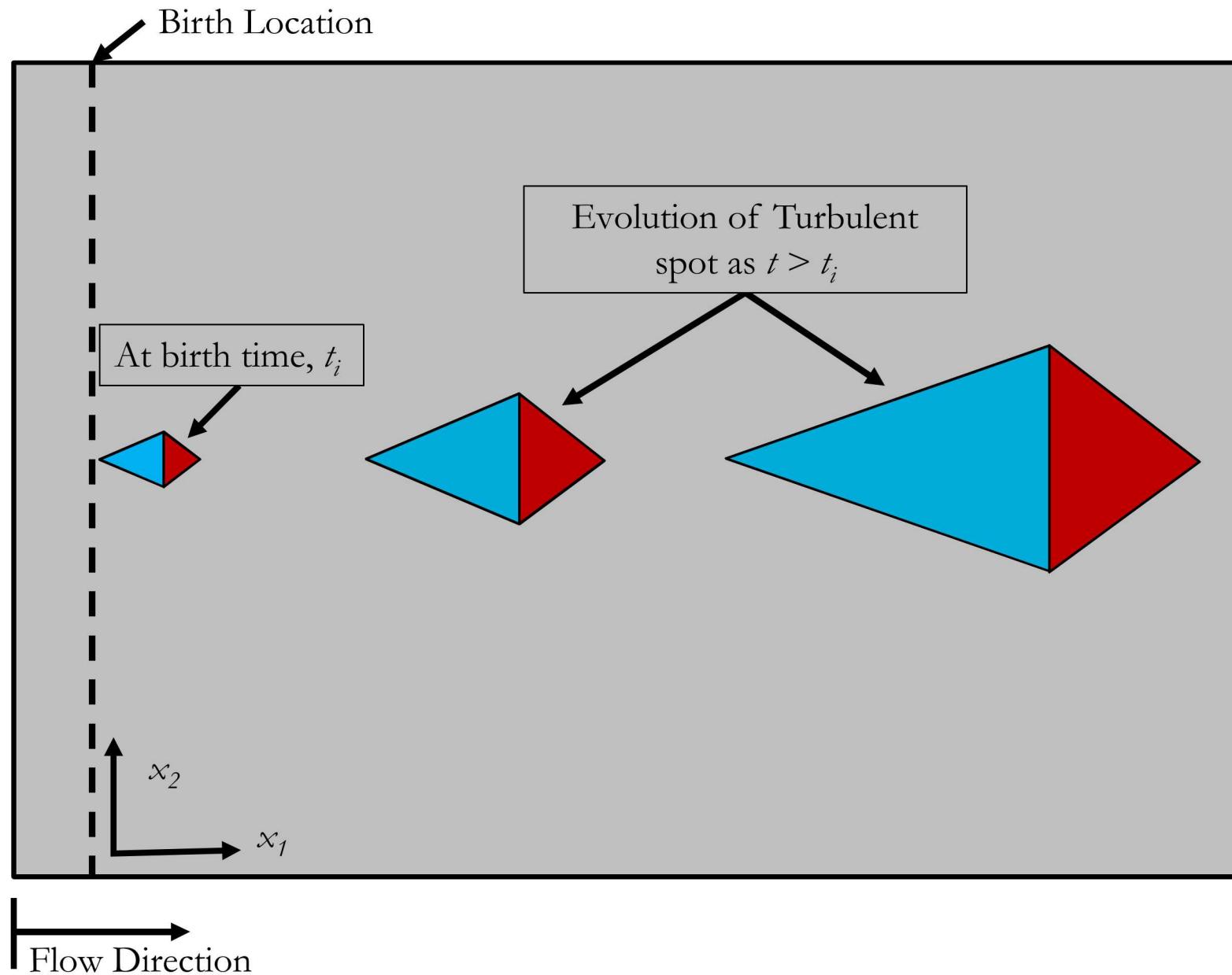
Mode Description	Structural Natural Frequency (kHz)	Damping (%)
2-lobe panel mode, lobes along Y (P_y)	2.099	2.57
2-lobe panel mode, lobes along X (P_x)	3.381	4.96
3-lobe panel mode, mostly motion in center lobe (P_z)	2.831	2.44

Finite Element Model: Sharp Cone Structure

- 3-D finite element (FE) structural model was created and calibrated,
 - FE model consists of 5.24E5 first order, 3-D elements and 5.77E5 nodes;
 - A total of 50 modes were identified in the range of 0-10.5 kHz.
- Incorporates all of the experimental hardware;
- Hammer test data was used to calibrate the model from 0-4 kHz;
- Model and the resulting dynamical response simulations were performed using Sierra/Structural Dynamics software,
 - Each case used $\Delta t = 1/100000$ s and $N_{\Delta t} = 100000$.



Brief Description of Model: Birth Time, location, and spot evolution

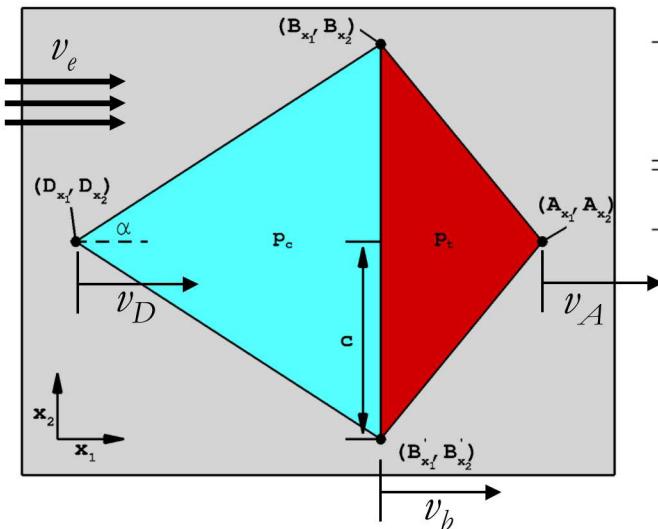


Brief Description of Model Cont.: Pressure Loading



11 Fluid Model Parameters

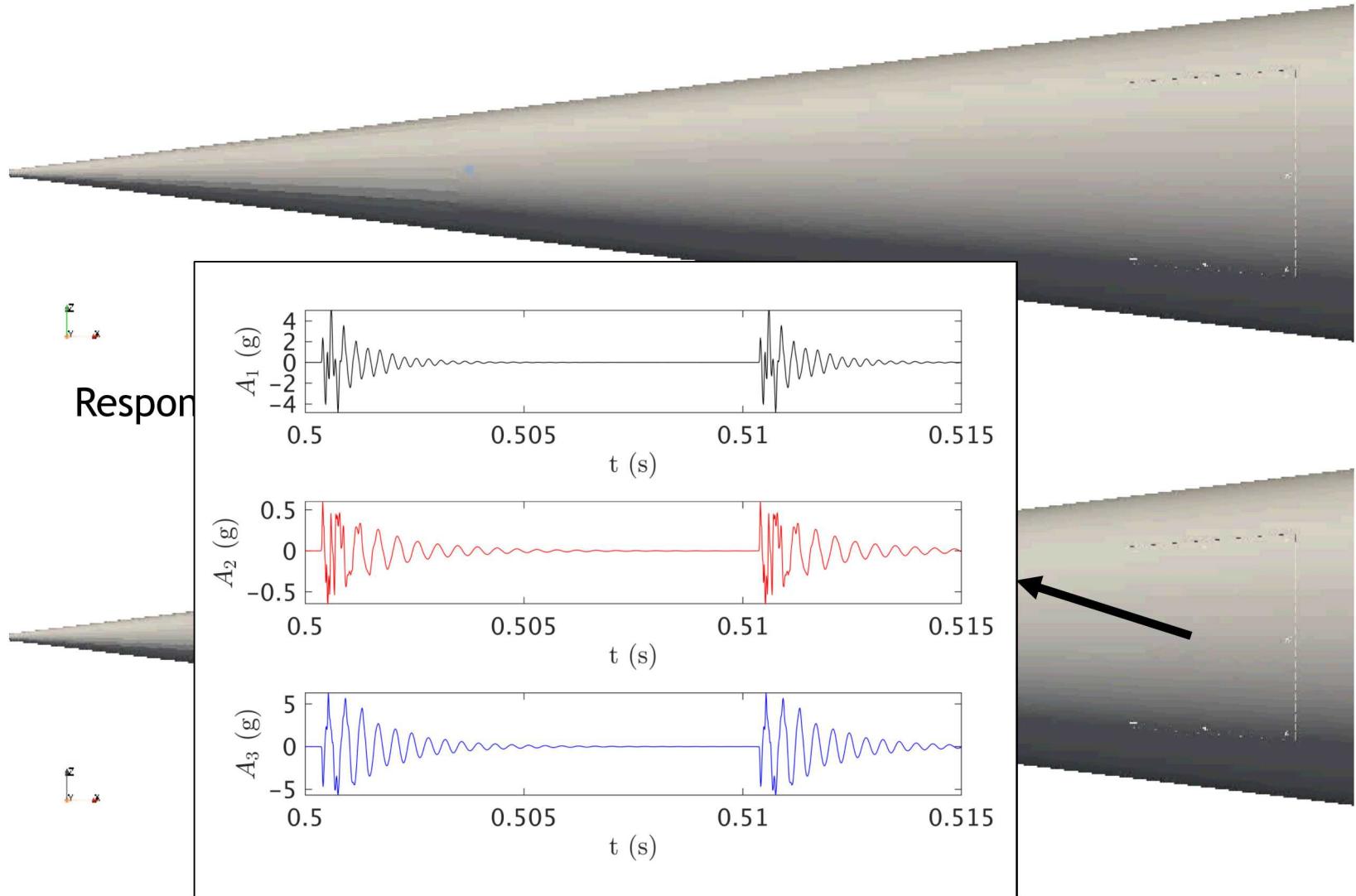
- The FE model was loaded with periodic turbulent spots at various forcing frequencies;
 - The forcing frequencies used illustrated a quasi-isolated spot case and 3 cases in which the forcing frequencies were close to a resonant frequency of the panel;
 - These forcing frequencies are: $f_f = \{0.1, 2.2, 2.7, 3.9\}$ kHz,
 - The 2.2, 2.7, and 3.9 kHz forcing frequencies match the P_y , P_z and P_x mode shapes, respectively, from experiment.
- We also varied the convection velocity, v_e , to see its affects;
- Other parameter variations are not studied here,
 - α , Half-spread angle;
 - p_e , boundary layer edge pressure.



v_e (m/s)	p_e (kPa)	v_D/v_e (-)	v_b/v_e (-)	v_A/v_e (-)	p_t/p_e (-)	p_c/p_e (-)	α (degrees)
870	1.31	0.52	0.71	0.95	0.4	-0.2	3

Case I: $f_f = 0.1 \text{ kHz}$

Force Loading From Periodic Spot Model



Case I: $f_f = 0.1 \text{ kHz}$

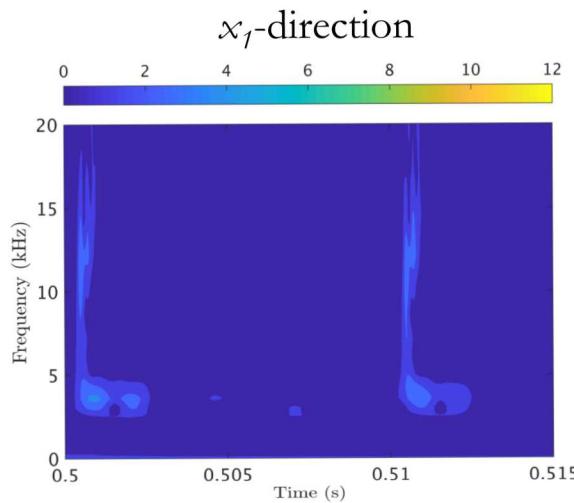
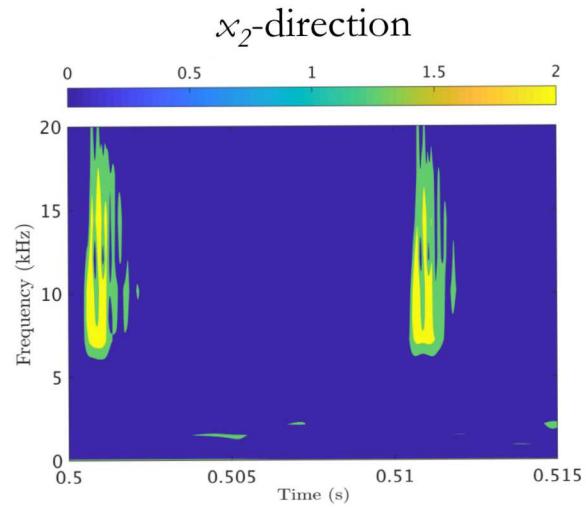
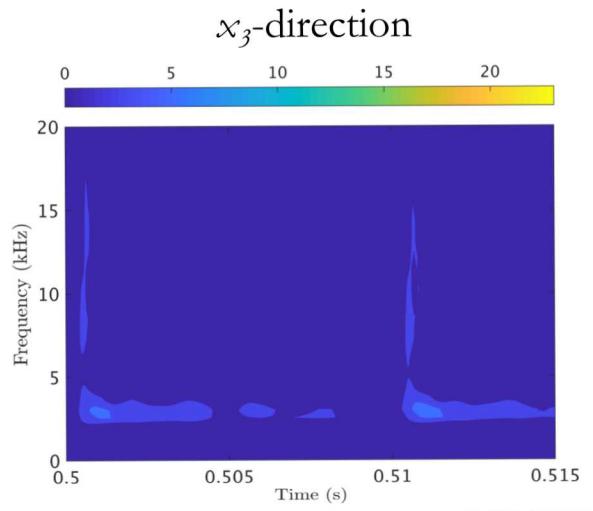
Damping Times		
Direction	Experiment (ms)	Computation (ms)
x_1	4.50	5.64
x_2	4.20	6.04
x_3	9.00	8.16

Max $ \mathcal{A}_i $		
Direction	Experiment (g)	Computation (g)
x_1	3.09	5.03
x_2	3.79	0.65
x_3	4.86	6.31

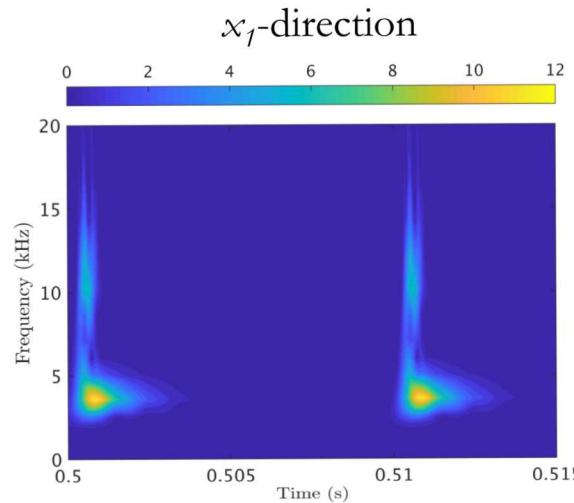
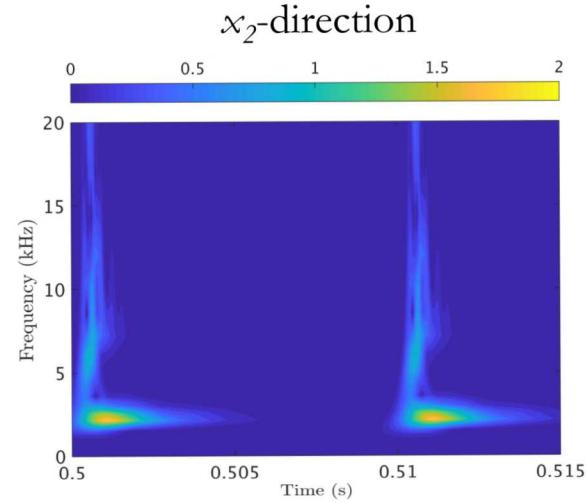
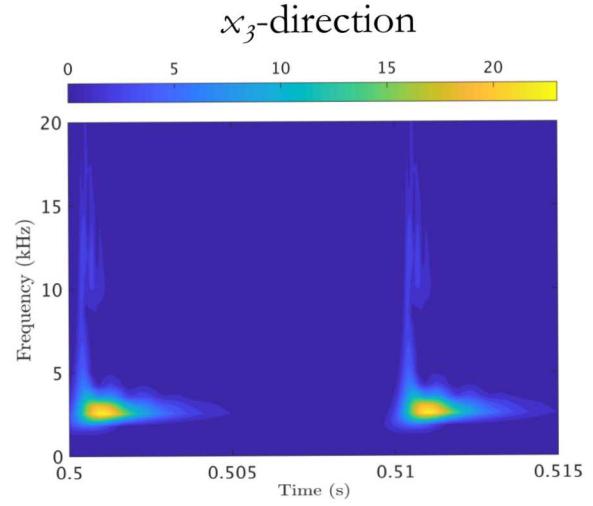
- The damping times and $\text{Max } |\mathcal{A}_i|$ are comparable between experiment and computation;
- Some of the discrepancies in the comparison may be due to,
 - Uncertainty in the structural damping in the FE model;
 - No spanwise variation in the perfectly symmetric computation,
 - There will be some asymmetry in the experiment.
 - Sensitivity to the forcing frequency offset from the resonant natural frequency.

Case I: $f_f = 0.1$ kHz

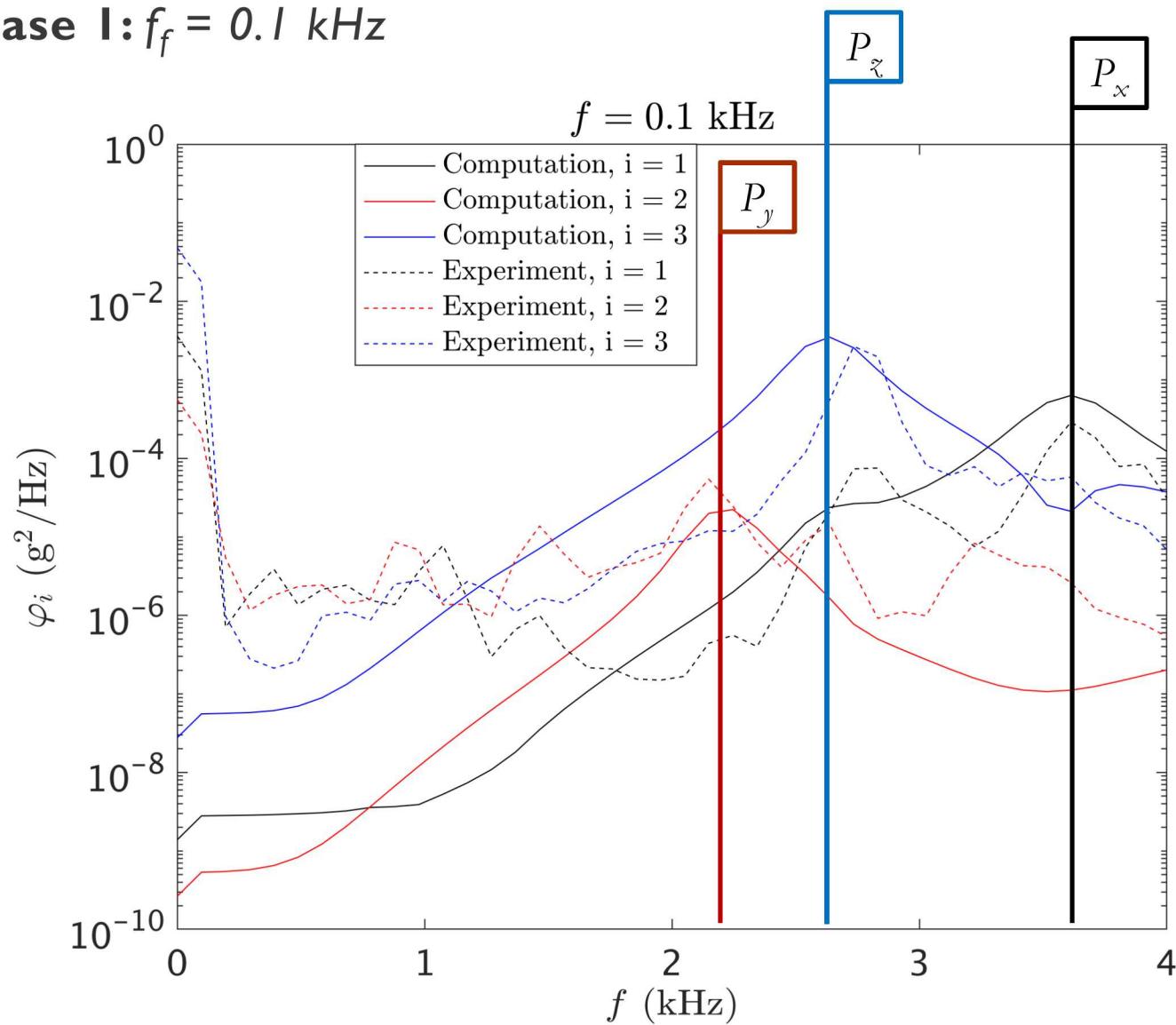
Experiment



Computation

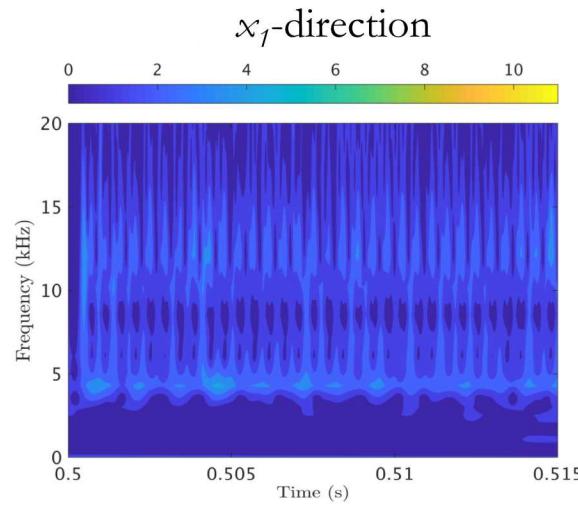
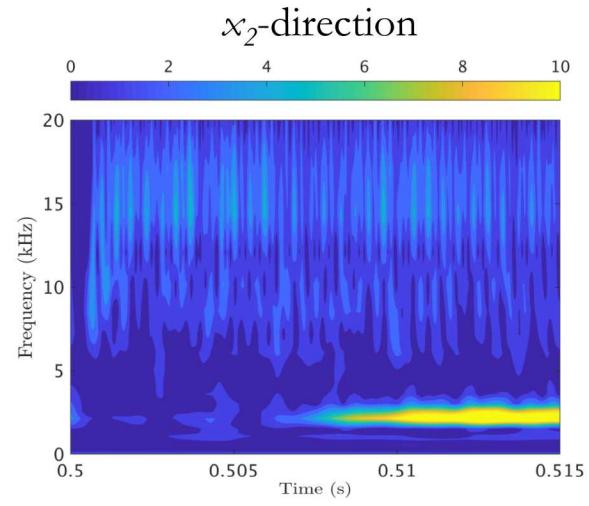
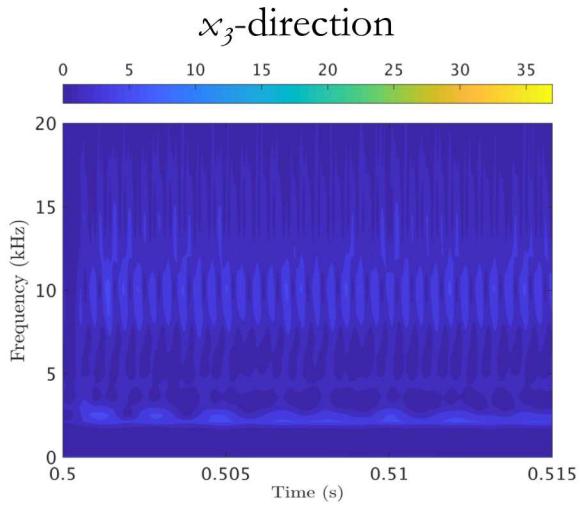


Case I: $f_f = 0.1$ kHz

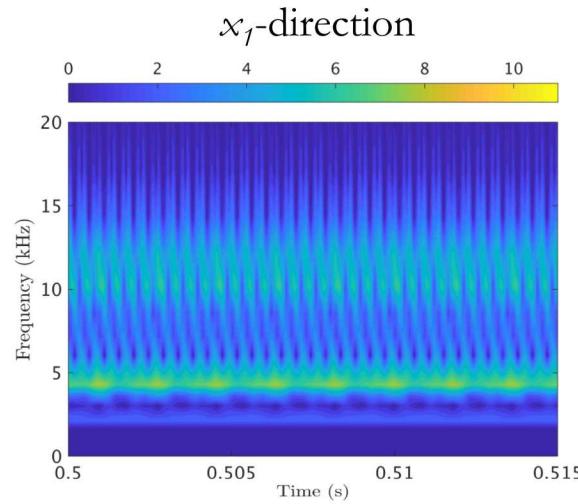
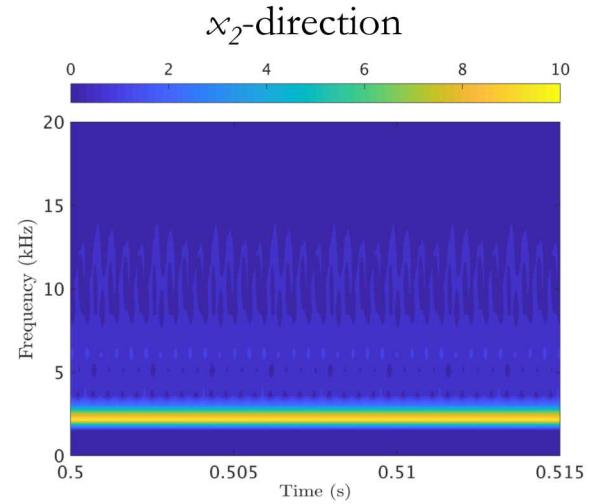
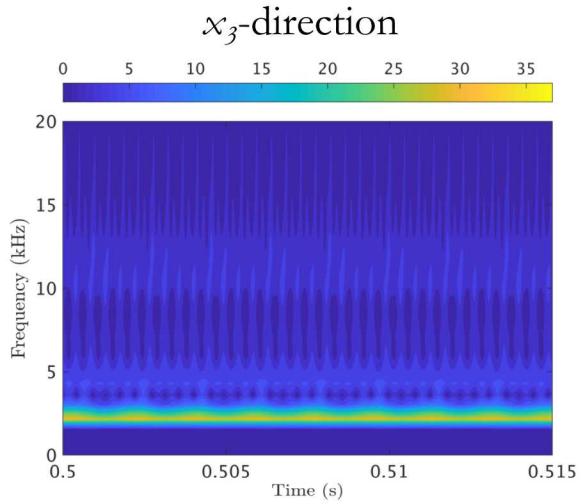


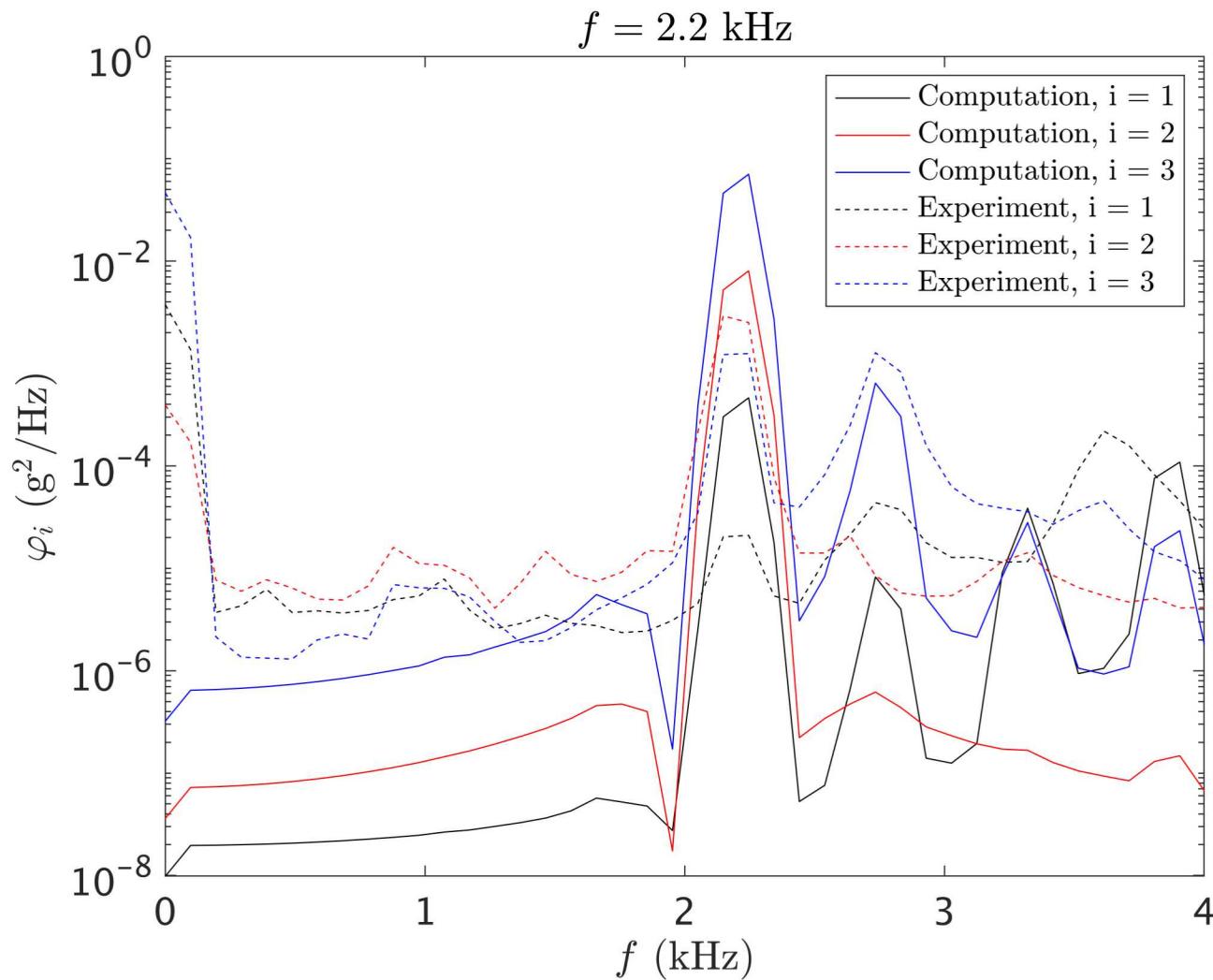
Case I: $f_f = 2.2 \text{ kHz}$

Experiment

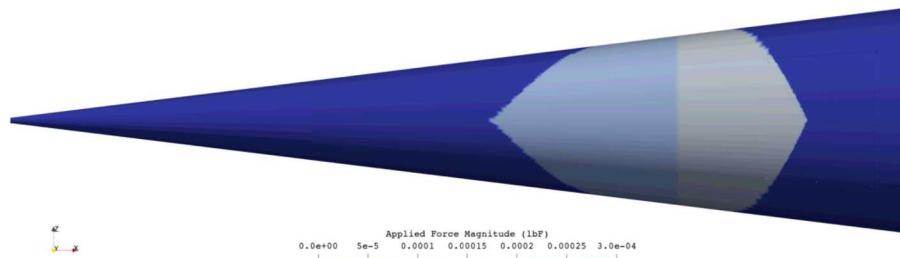
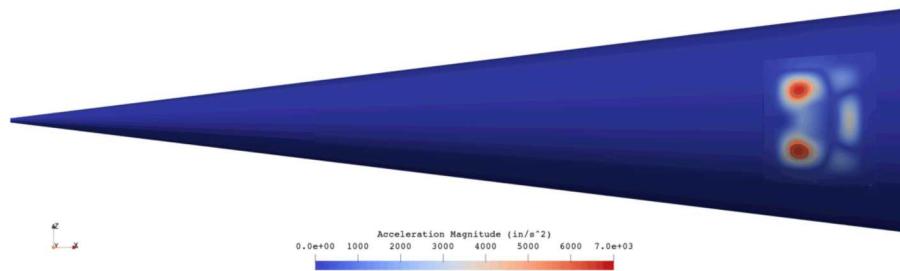


Computation



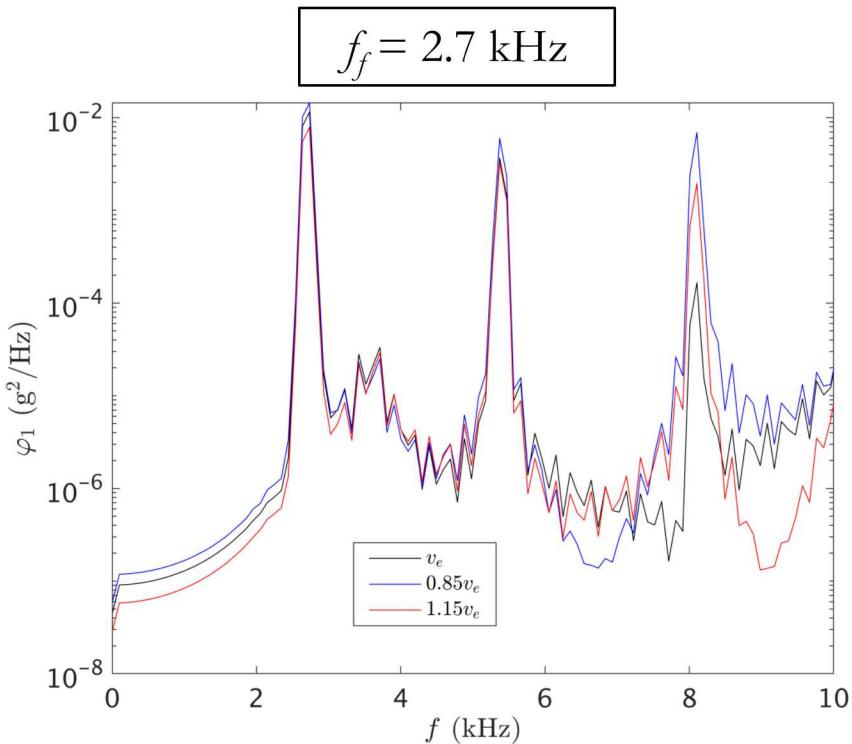
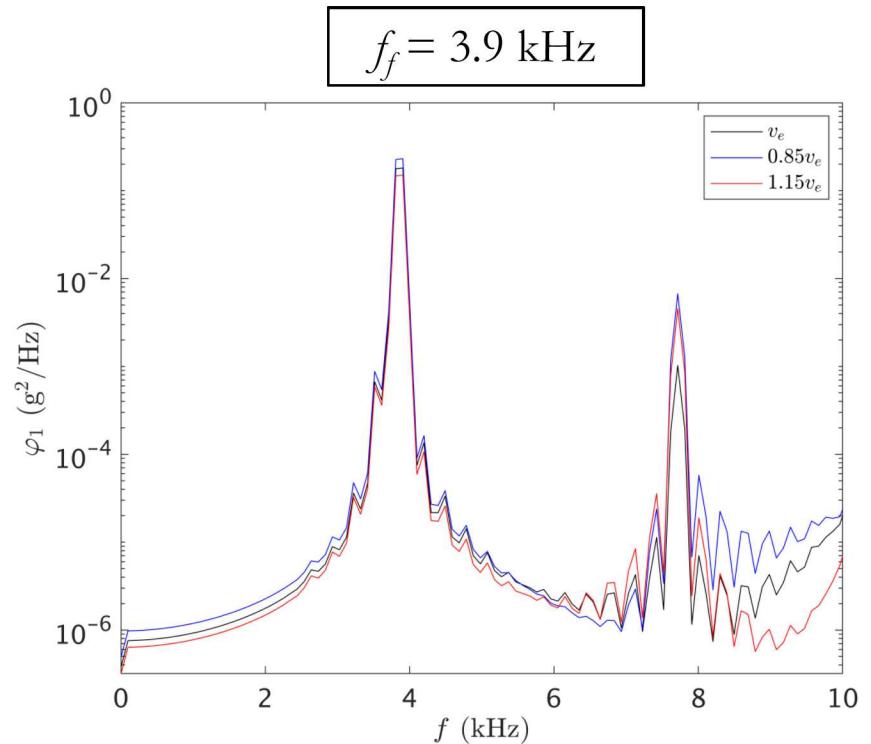
Case I: $f_f = 2.2 \text{ kHz}$ 

Qualitative Impact of Turbulent Spot Convection Velocity

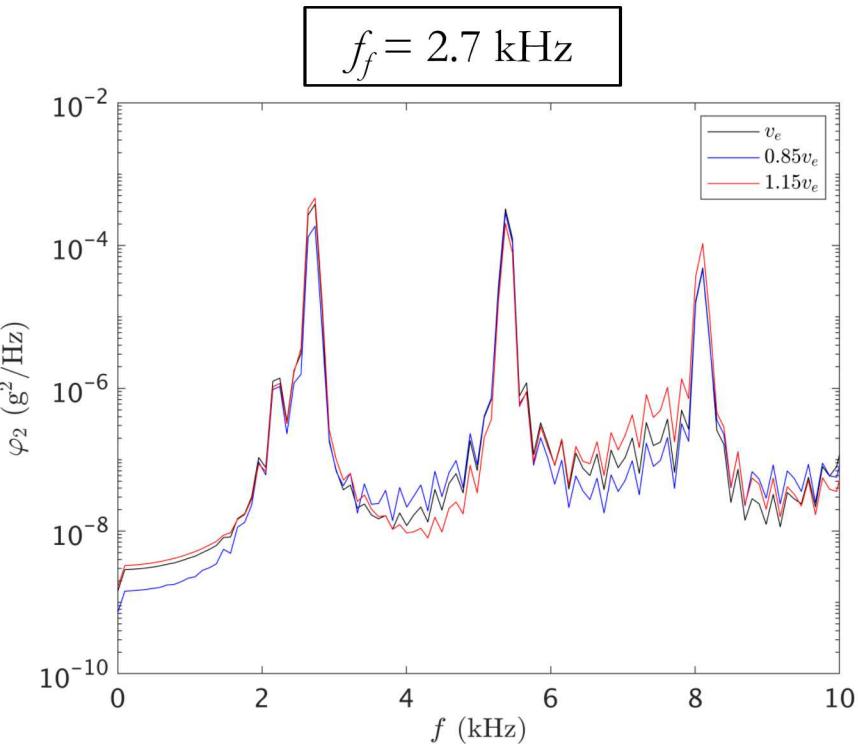
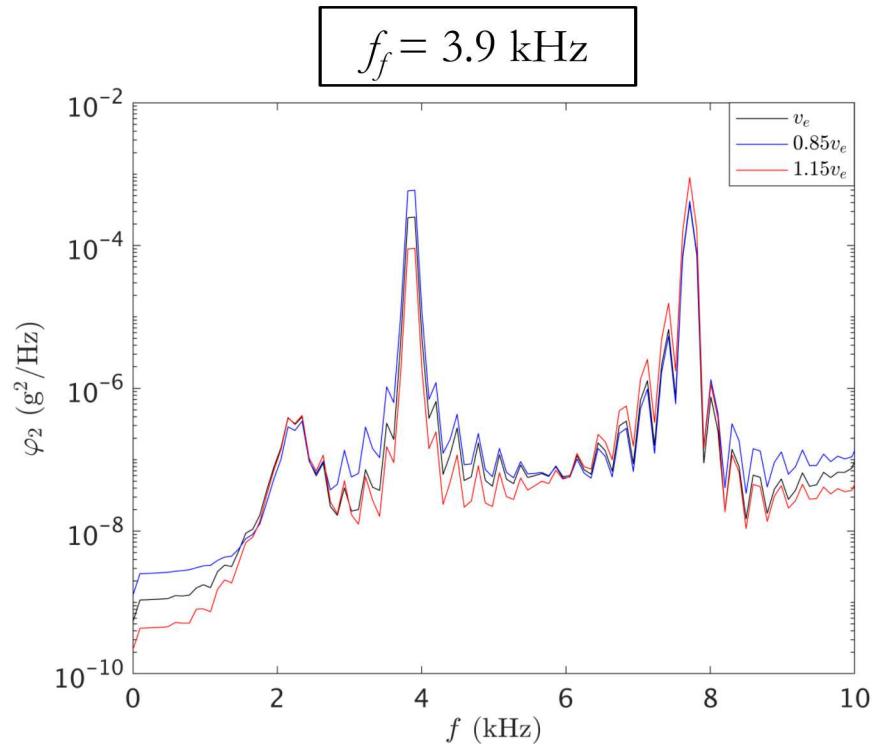


- It was shown that our simulations yield qualitatively comparable results when compared to experiment;
- We want to leverage our simulation capability to study the dominating phenomena that leads to the frequency content seen in the response;
- We have already shown that f_f , which corresponds to the time between spot events, dictates the modes and mode shapes that were excited;
- We also want to determine if the convection velocity of the turbulent spots also contributes to the frequency content of the structural response;
- For $f_f = \{2.7, 3.9\}$ kHz, the convection velocity will be varied by $\pm 0.15\nu_e$.

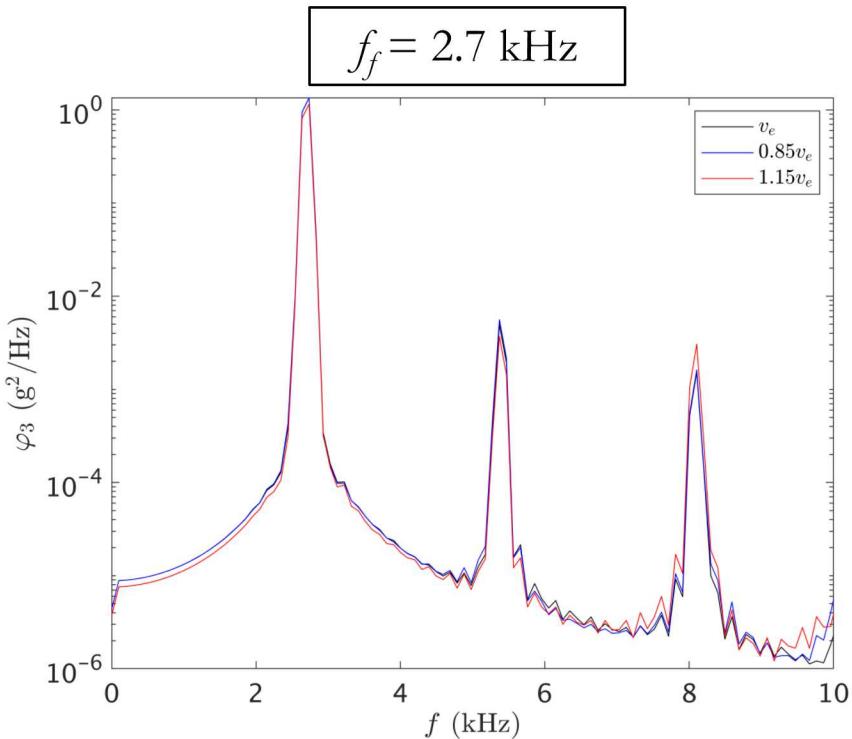
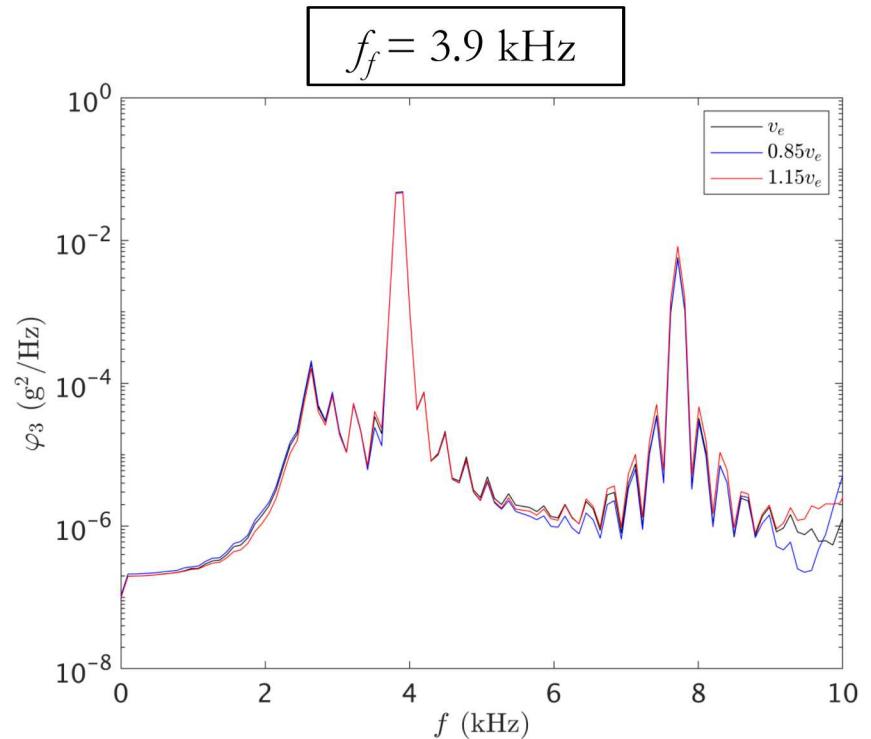
Turbulent Spot Convection Velocity Study: Results



Turbulent Spot Convection Velocity Study: Results

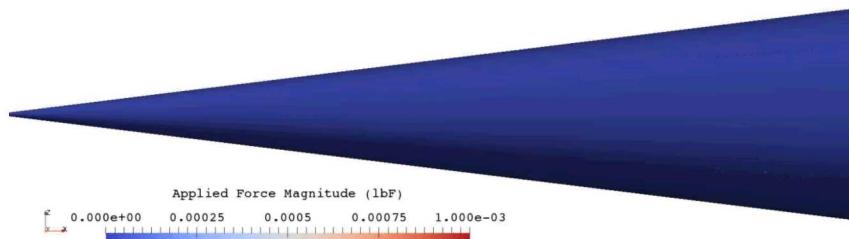
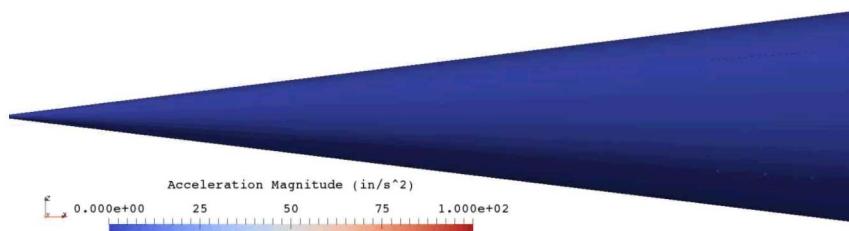


Turbulent Spot Convection Velocity Study: Results



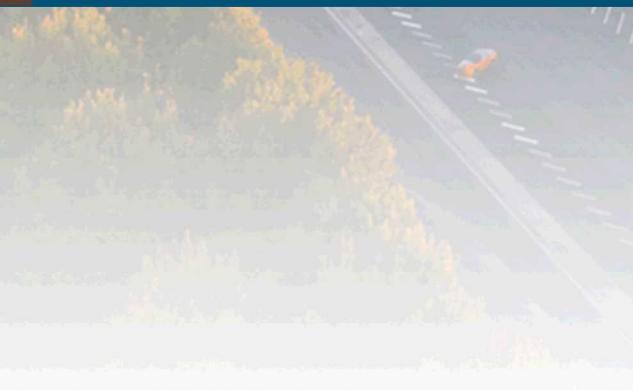
Concluding Remarks and Future Efforts

- Deterministic model that describes the birth, evolution, and pressure loading of turbulent spots being born at a given f_f developed;
- The model as well as a FE model of a sharp cone structure was used to perform a numerical analysis of the work of Casper *et al.*;
- The numerical simulations provided qualitatively insightful responses when compared to experiment;
- It was illustrated that the convection velocity of the turbulent spots plays a small role in the modes and mode shapes excited in the structure;
- The dominating contributor is the f_f or the time between spot events;
- **Future Efforts:**
 - Explore additional fluid and structural model variations to understand their effect;
 - These results have been leveraged to improve our random loading/natural transition loading model;

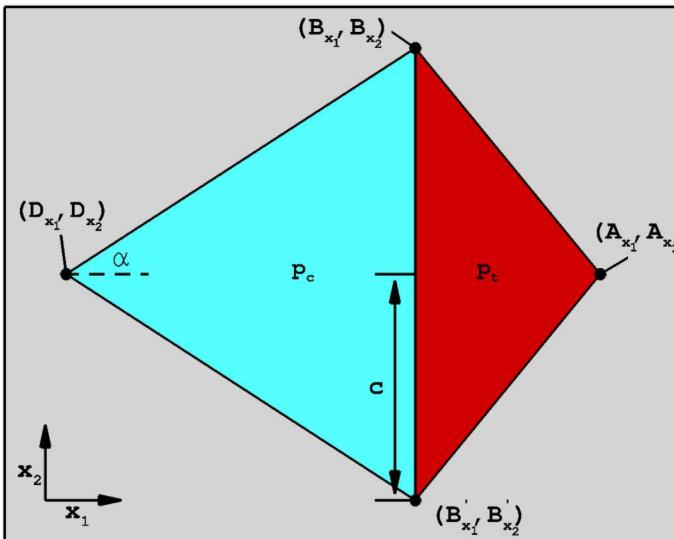


Questions?

Extra Slides



Model Definition: Deterministic Description of Single Turbulent Spot Evolution and Pressure Loading



- *Step 1. Spots at birth:* Generate birth times, t_i , $i = 1, \dots, n$, such that $t_1 = 0$ s and $t_n = (n - 1)/f_f \leq t_{tol}$ and assign each spot i with birth geometry (c, h_A, h_D) ;
- *Step 2. Spot evolution:* Calculate the positions of vertices B , B' , A , and D for any time $(t_i + t) > 0$ by using,

$$\begin{aligned}
 & (a_1 + v_b t, a_2 + c + v_b t \tan \alpha), && \text{For vertex } B, \\
 & (a_1 + v_b t, a_2 - c - v_b t \tan \alpha), && \text{For vertex } B', \\
 & \left(a_1 + h_A + \int_{t_i}^{t_i+t} v_A(s) ds, a_2 \right), && \text{For vertex } A, \\
 & \left(a_1 - h_d + \int_{t_i}^{t_i+t} v_D(s) ds, a_2 \right), && \text{For vertex } D.
 \end{aligned}$$

Model Definition Cont.: Deterministic Description of Single Turbulent Spot Evolution and Pressure Loading

- Step 3. *Spot pressure loading*: Determine if coordinate location (x_1^*, x_2^*) is within the turbulent or calmed region of turbulent spot i by means of checking the conditions;

If all conditions are met, (x_1^*, x_2^*) is within the **turbulent region**.

$$\text{Condition 1: } (a_1 + v_b t) < x_1^*,$$

$$\text{Condition 2: } \left(a_1 + h_A + \int_{t_i}^{t_i+t} v_A(s) ds \right) > x_1^*,$$

$$\text{Condition 3: } (a_2 - \delta x_{2,t}) \leq x_2^* \leq (a_2 + \delta x_{2,t}),$$

$$\delta x_{2,t} = \left(a_1 - x_1^* + h_A + \int_{t_i}^{t_i+t} v_A(s) ds \right) \left(\frac{c + v_b t \tan \alpha}{h_A + \int_{t_i}^{t_i+t} v_A(s) ds - v_b t} \right).$$

$$\text{Condition 1: } (a_1 + v_b t) > x_1^*,$$

$$\text{Condition 2: } \left(a_1 - h_D + \int_{t_i}^{t_i+t} v_D(s) ds \right) < x_1^*,$$

$$\text{Condition 3: } (a_2 - \delta x_{2,c}) \leq x_2^* \leq (a_2 + \delta x_{2,c}),$$

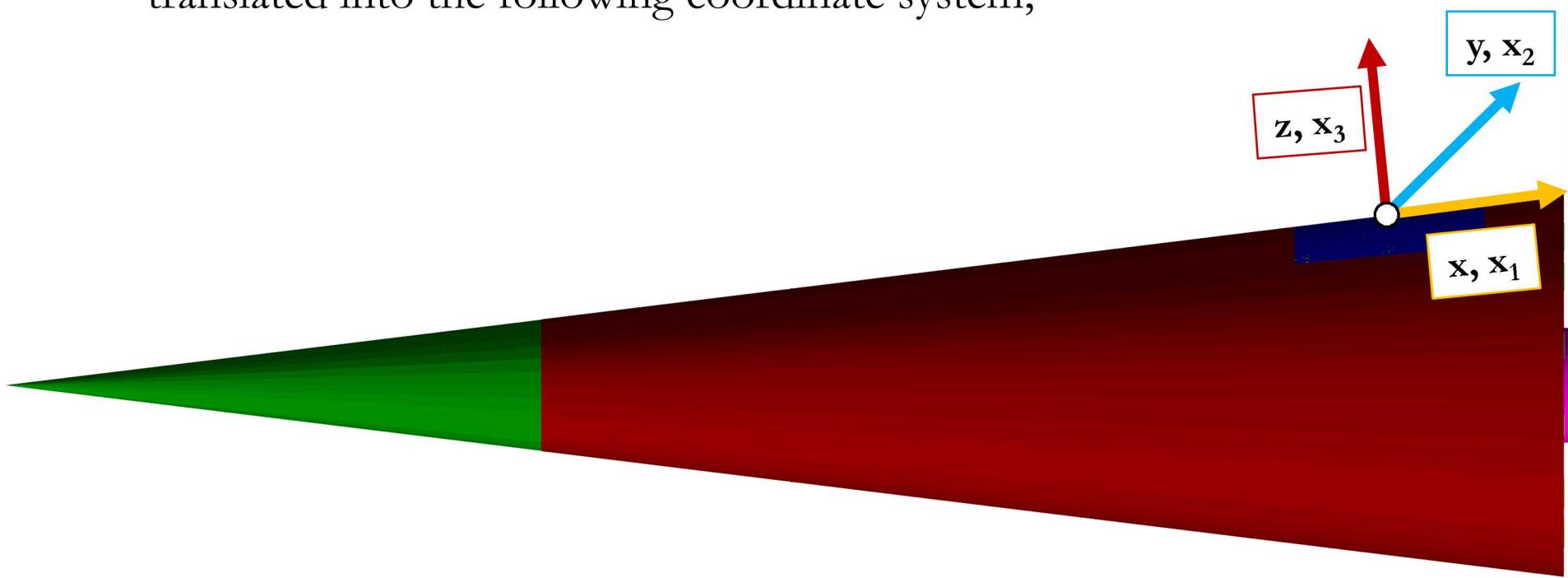
$$\delta x_{2,c} = \left(x_1^* - a_1 + h_D - \int_{t_i}^{t_i+t} v_D(s) ds \right) \tan \alpha.$$

If all conditions are met, (x_1^*, x_2^*) is within the **calmed region**.

- Step 3 Cont. *Spot pressure loading*: additionally, assign pressure loading to location if a set of conditions is met. If spot i and $(i + 1)$ have overlapping regions, allow the turbulent pressure loading to take precedence.

Coordinate System

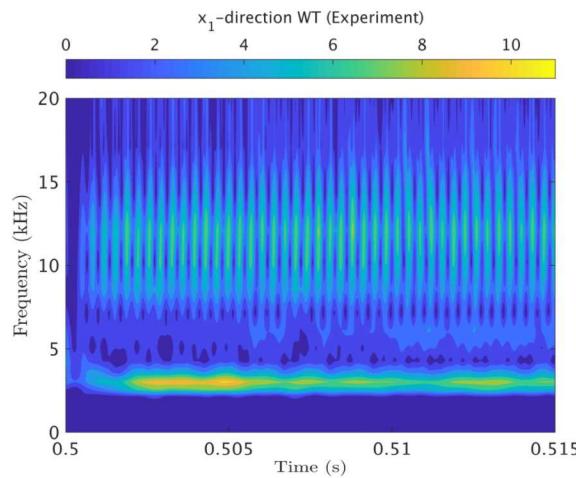
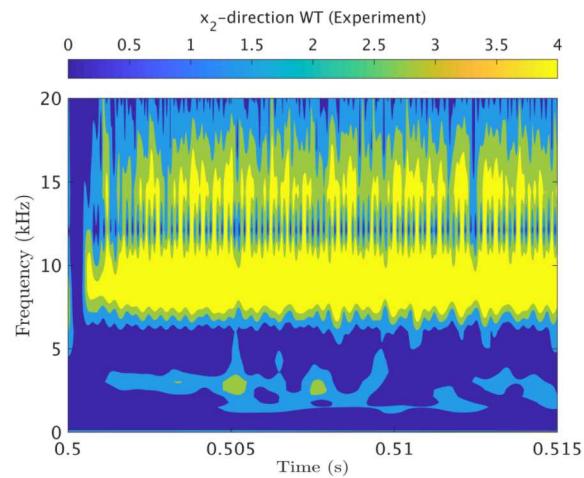
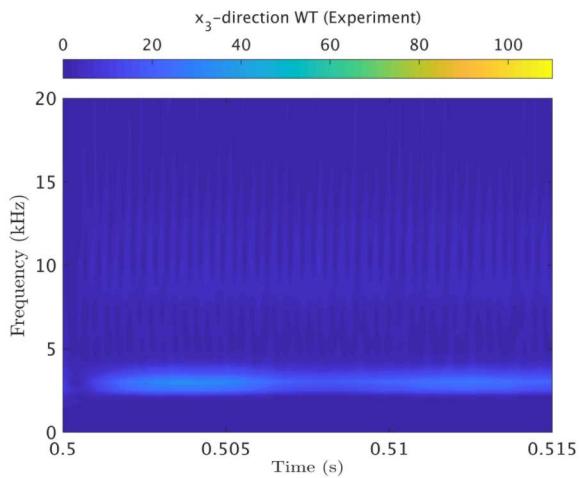
- All acceleration response simulation data, once extracted, is translated into the following coordinate system;



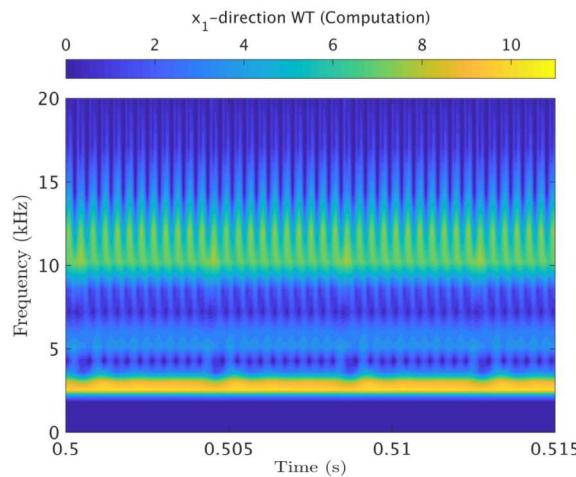
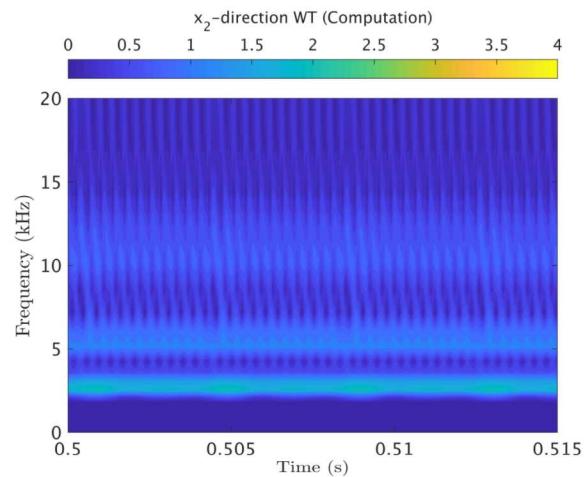
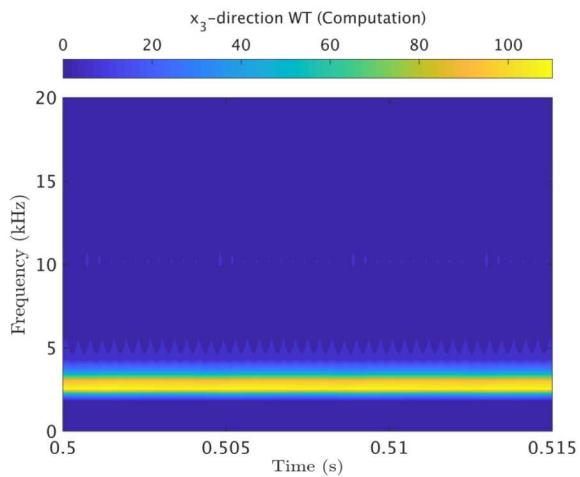
- This coordinate system was defined by Casper *et al*¹;
- The experimental data is measured assuming this coordinate system, therefore we are adopting it for comparison purposes.

Case I: $f_f = 2.7 \text{ kHz}$

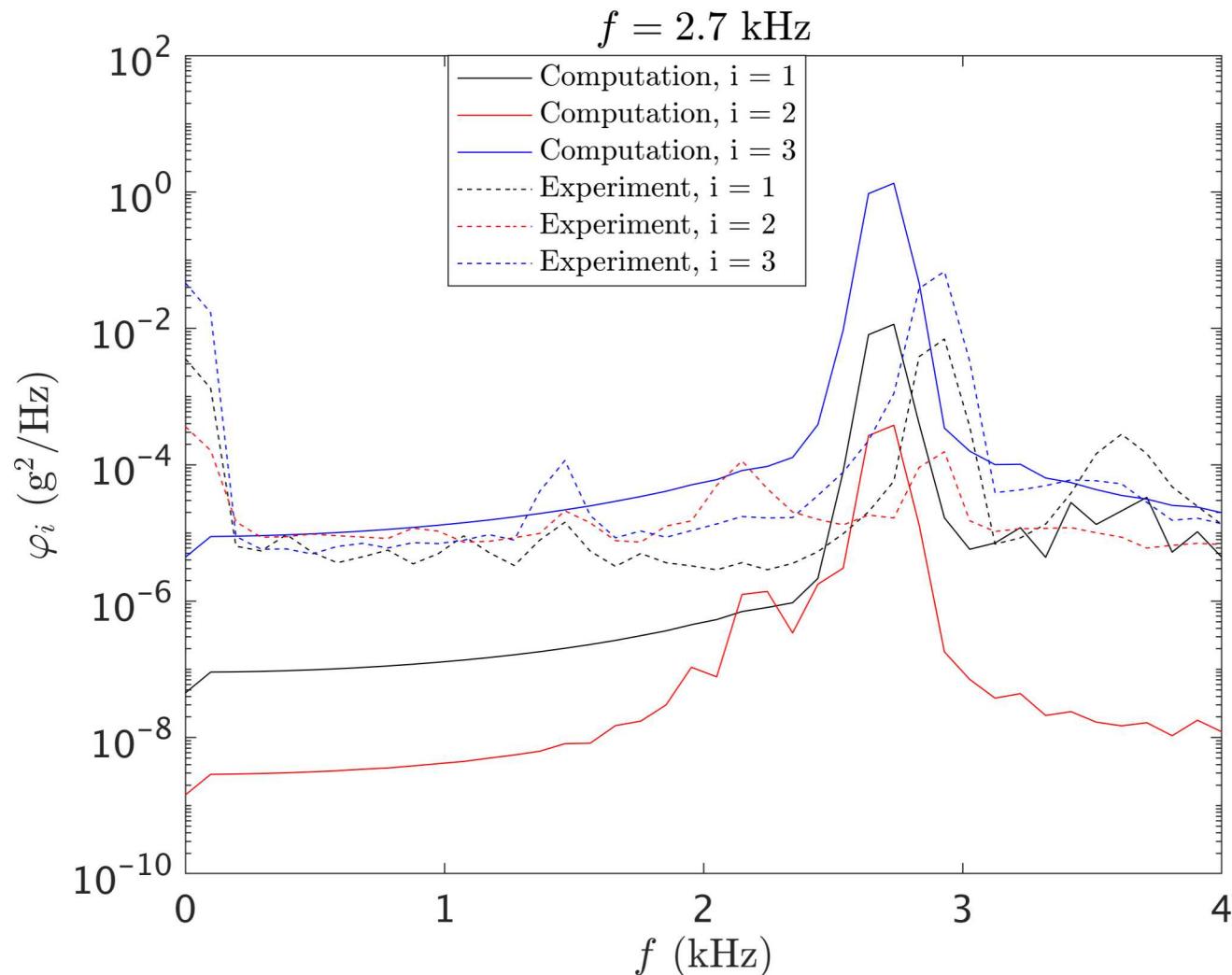
Experiment



Computation

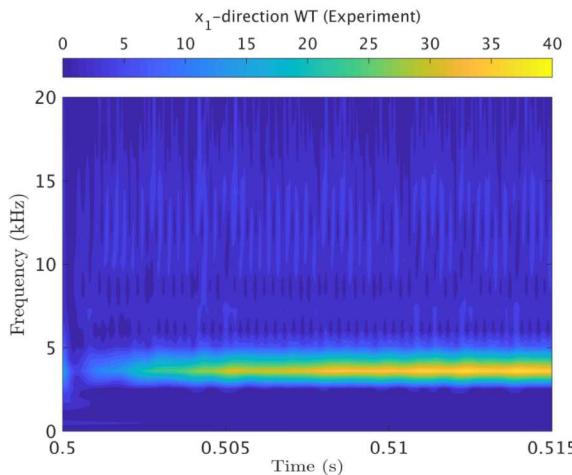
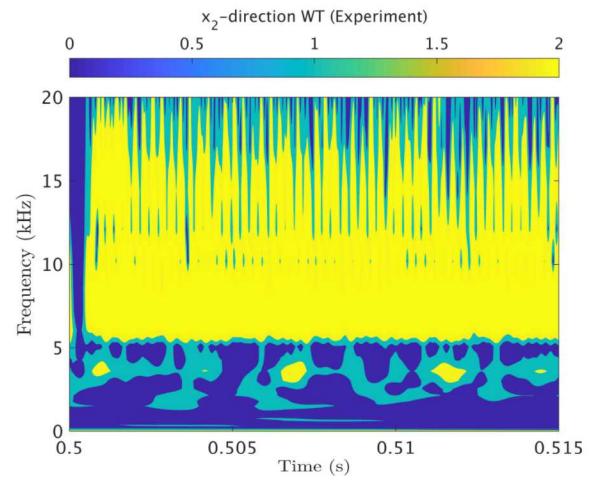
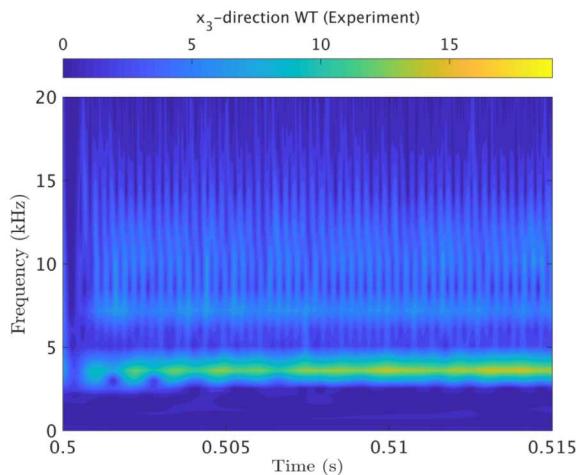


Case I: $f_f = 2.7 \text{ kHz}$

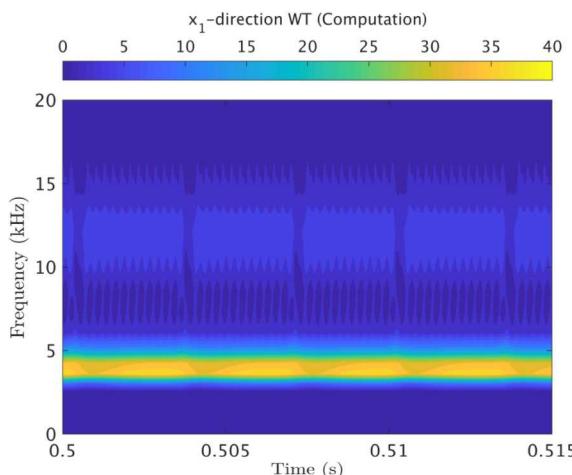
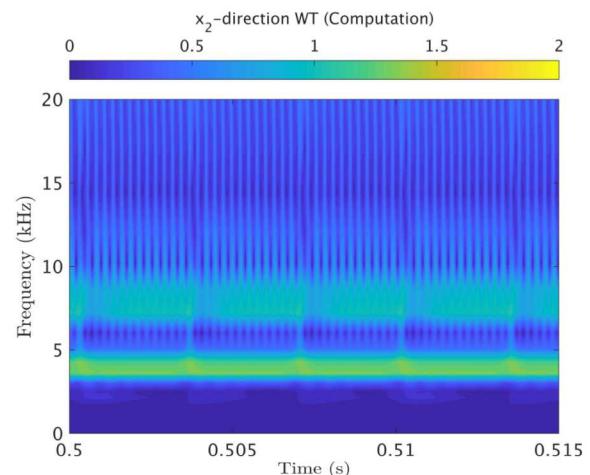
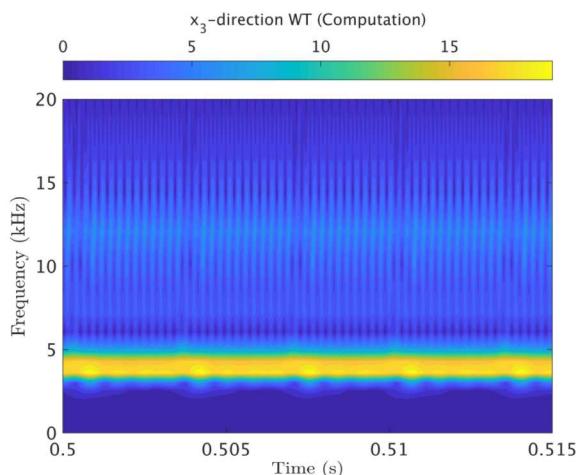


Case I: $f_f = 3.9 \text{ kHz}$

Experiment



Computation



Case I: $f_f = 3.9$ kHz