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2 | Introduction

oIn order to aEpropriately quantify the restonse of an
aerospace vehicle undergoing transitional flow, it is
important to account for phenomena that may influence
the dynamics of the structure;

o Turbulent spots are formed within the boundary layer
during transitional flow;

o These spots subject the structure to severe pressure
fluctuations,

Pressure fluctuations during transitional flow can be larger than
during fully turbulent flows;

Results in random vibration of the structure and its internal
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31 Introduction Cont.

oThe resulting vibration can yield structural problems;

o We seek to model the phenomena associated with
random turbulent spots and transitional behavior
that lead to structural response.

oModel can be used to better design aerospace
vehicles for flight conditions;

Transition Loading Structural Response |




41 Introduction Cont.

Simplify problem to this!

Random Loading, Natural Transition Periodic Spot Forcing

o Develop a deterministic model that describes the birth, evolution, and
pressure loading of turbulent spots born at a given forcing frequency, f;

Calibrate and inform model using experimental data;
Compare results with experiments conducted by Casper e a/.!

o This will allow us to tune our structural model,
For example, structural damping.

o Study the affect of the fluid model parameters,
Convection velocity;
o Half-spread angle;

Time between spot events.

1Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W., Hunter, P., and Spitzer, S., “Hypersonic fluid-structure interactions due to
intermittent turbulent spots on a slender cone,” Accepted for Publication in AIAA Journal, September 2018.
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Turbulent Spot Pressure Loading

Transitional pressure loading is generated by intermittent turbulent
spots in the boundary layer.

o We model these spots as 1sosceles triangles with conjoined base;

o The turbulent and calmed regions are assumed to be constant values that are the
mean pressure fluctuation for that region.
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s | Work of Casper et al.: Brief Experiment Overview

o Designed a cone with
integrated thin panel that will
vibrate from flow excitation,

o Panel response measured with
accelerometers on inside of
panel;

o Boundary later was
characterized using pressure
sensors upstream and
downstream of panel.

o A spark perturber was used
to create isolated or periodic
turbulent spots in the
boundary layer;

o Experiments conducted at
the Purdue BAMO6QT quiet

tunnel.
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Work of Casper et al.: Brief Experiment Overview Cont.

o Hammer test was performed to J/ - 4
determine the structural natural /
frequencies of the panel and model,

O Measure structural response to a known

input; ’
o Also characterized mode shapes. -
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oModes of interest are,

o Structural Natural "
Mode Description i (956 Damping (%)

2-lobe panel mode,

lobes along Y (P)) 229 a

2-lobe panel mode,

lobes along X (P,) 5-981 496

3-lobe panel mode,
mostly motion in center 2.831 2.44

lobe (P




s I Finite Element Model: Sharp Cone Structure

o 3-D finite element (FE) structural
model was created and calibrated,

o FE model consists of 5.24E5 first

order, 3-D elements and 5.77E5
nodes;

A total of 50 modes were identified
in the range of 0-10.5 kHz.

o Incorporates all of the experimental
hardware;

o Hammer test data was used to
calibrate the model from 0-4 kHz;

O Model and the resulting dynamical
response simulations were
performed using Sierra/Structural
Dynamics software,

> Each case used A47=1/100000 s and
N_,, = 100000.
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Brief Description of Model: Birth Time, location, and spot
evolution

I/ Birth Location
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I Evolution of Turbulent
I spot as 7 > ¢
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Brief Description of Model Cont.: Pressure Loading

Assign p, to

(0, ™% 20)™%)

Assign p_ to

(0% 25%)

Flow Direction




11 I Fluid Model Parameters

o The FE model was loaded with periodic turbulent spots at various forcing
frequencies;

The forcing frequencies used illustrated a quasi-isolated spot case and 3 cases in which the
forcing frequencies were close to a resonant frequency of the panel;

These forcing frequencies are: /= {0.1, 2.2, 2.7, 3.9} kHz,

o The2.2,2.7, and 3.9 kHz forcing frequencies match the P, P,, and P, mode shapes, respectively, from experiment.

o We also varied the convection velocity, »,, to see its affects;

o Other parameter variations are not studied here,
a, Half-spread angle;
p,, boundary layer edge pressure.
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21 Case l:f.= 0./ kHz

Force Loading From Periodic Spot Model
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Case I:f-= 0./ kHz

Damping Times Max | A, |

Experiment Computation

. . Experiment Computation
Direction p p

(ms) (ms) (2) (2)

Direction

x; 4.50 5.64 % 3.09 5.03
% 4.20 6.04 %, 3.79 0.65
x5 9.00 8.16 x5 4.86 6.31

o The damping times and Max |.4;| are comparable
between experiment and computation;

o Some of the discrepancies in the comparison may be
due to,
Uncertainty in the structural damping in the FE model;
No spanwise variation in the perfectly symmetric computation,
o There will be some asymmetry in the experiment.

Sensitivity to the forcing frequency offset from the resonant
natural frequency.




41 Case l:f-= 0./ kHz

Experiment
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Case I:f,= 0./ kHz

f=0.1 kHz
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161 Case l:f= 2.2 kHz
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171 Case I:ffz 2.2 kHz

f=22kHz
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18 1 Qualitative Impact of Turbulent Spot Convection Velocity

o It was shown that our simulations yield qualitatively comparable results when
compared to experiment;

o We want to leverage our simulation capability to study the dominating phenomena
that leads to the frequency content seen in the response;

0 We have already shown that /; , which corresponds to the time between spot
events, dictates the modes and mode shapes that were excited;

o We also want to determine 1f the convection velocity of the turbulent spots also
contributes to the frequency content of the structural response;

o For f,={2.7, 3.9} kHz, the convection velocity will be varied by +0.15,
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Turbulent Spot Convection Velocity Study: Results
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Turbulent Spot Convection Velocity Study: Results
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Concluding Remarks and Future Efforts

©)

Deterministic model that describes the birth, evolution, and pressure loading of turbulent
spots being born at a given f,developed;

The model as well as a FE model of a sharp cone structure was used to perform a numerical
analysis of the work of Casper e al.;

The numerical simulations provided qualitatively insightful responses when compared to
experiment;

It was illustrated that the convection velocity of the turbulent spots plays a small role in the
modes and mode shapes excited in the structure;

The dominating contributor is the f; or the time between spot events;

Future Efforts:
Explore additional fluid and structural model variations to understand their effect;
These results have been leveraged to improve our random loading/natural transition loading model;
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Questions?

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
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Model Definition: Deterministic Description of Single Turbulent
25 I Spot Evolution and Pressure Loading

(B, B

1 (B,/B,)

o Step 1. Spots at birth: Generate birth times, 7, =1, ..., , such that 7, = 0 s and
t, = (n-1)/f; < t,,and assign each spot 7 with birth geometry (¢, 44, bp);

o Step 2. Spot evolution: Calculate the positions of vertices B, B’, A, and D for any
time (#,+ 7 > 0 by using,

(a1 + vpt, az + ¢ + vpt tan «), For vertex B,
(a1 + vpt, a2 — ¢ — vpt tan «), For vertex B’,
t;+t
<a1 + ha+ / va(s)ds, a2> , For vertex A,
t;

t;+t
(a1 — hg + / vp(s)ds, a2> , For vertex D.
t;




Model Definition Cont.: Deterministic Description of Single

26

Turbulent Spot Evolution and Pressure Loading

o Step 3. Spot pressure loading: Determine if coordinate location (x,*, x,*) is within the
turbulent or calmed region of turbulent spot 7 by means of checking the

conditions;

If all conditions
are met, (x1*, x2%)
1s within the
turbulent region.

Condition 1: (a1 + vpt) <

t +t
Condition 2: <a1 + hy + /
Condition 3: (ag — 0xay) < x5 <

5 < (a2 + 0xay),

titt
. i + uptt
dxos = <a1 —z7+ ha —|—/ vA(s)ds> < vb .
t; ha+ f A(S)ds — upt

Condition 1: (a1 + vpt) > 27,

Condition 2:

(3

Condition 3: (ag — 0xa,c) < x5 <

i

t;+t
(a1 —hp +/ vD(s)ds> < zj,
t

ti+t
0z = (ﬁ —a1+hp — / vD(s)ds> tan a.
t

If all conditions
are met, (x1*, x2%)
1s within the
calmed region.

(a2 + 6z2,),

o Step 3 Cont. Spot pressure loading: additionally, assign pressure loading to location if a
set of conditions is met. If spot 7and (7 + 1) have overlapping regions, allow the
turbulent pressure loading to take precedence.




27 1 Coordinate System

o All acceleration response simulation data, once extracted, 1s
translated into the following coordinate system,;

o This coordinate system was defined by Casper ¢# a/; I

o The experimental data 1s measured assuming this coordinate
system, therefore we are adopting it for comparison purposes.
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Case I:f;= 2.7 kHz
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» 1 Case l:f = 2.7 kHz

f =2.7 kHz
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01 Case |:f= 3.9 kHz

Experiment

xl—direction WT (Experiment)

xz—direction WT (Experiment)

x3—direction WT (Experiment)

0 5 10 15 20 25 30 35 40 0 0.5 1 1.5 2 0 5 10 15
L
20 '
15
3 3 | | 3
& oMl IR I g
) 15 )
= = =
g g g
=3 = =
5
@
O T T R R R RRRRORRRRRRRRERERERREEEEEEEEEEEESESS
0.5 0.505 0.51 0.515 0.5 0.505 0.51 0.515 0.5 0.505 0.51 0.515
Time (s) Time (s) Time (s)
Computation
xl—direction WT (Computation) xz—direction WT (Computation) x3—direction WT (Computation)
0 5 10 15 20 25 30 35 40 0 0.5 1 1.5

N
o

5 10 15

20

15

10

Frequency (kHz)
Frequency (kHz)
Frequency (kHz)

o (%]

0.5 0.505 0.51 0.515 0.5 0.505 0.51 0.515 0.5 0.505 0.51

0.515
Time (s) Time (s) Time (s)




sl Case l:f;= 3.9 kHz

f =3.9 kHz
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