DIC Simulator using Blender

and Python

Dan Rohe

AND2019- 0195PE

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

Motivation

Real life is hard

The DIC simulator can give a noise-free, infinite depth of field, completely customizable environment to test
DIC, Photogrammetry, and other optical techniques without getting bogged down in experimental details.

Test planning

It can be time consuming to set up a test; once the part model and deflections have been determined and
loaded into the simulator, the test setup can be quickly investigated. Feasibility of optical techniques can be
investigated prior to the acquisition of hardware and lab space.

Drawbacks:

In real life, taking 10,000 photos can take a fraction of a second with high-speed cameras, rendering each one
takes a bit more time.

The renderer, Blender, which is designed for 3D modeling and animation, has rudimentary antialiasing
capabilities and can capture some subpixel motions; however, better results are obtained 1f the images are
rendered at a higher resolution and then downsampled with interpolation. This drastically increases render
times (factor of 10x or more)

Framework

The current framework utilizes the Blender modeling tool to create images from a 3D model.
Python preprocessors are available to convert e.g. an exodus file to a set of modes and modal gs.

Blender’s Python engine is used to automate the deformation of the mesh and the rendering of the
images at some multiple of the desired image resolution.

A subprocess is called to downsample the images to the desired image resolution after they have
been rendered.

The images can then be loaded into DICe or another software or code to perform analysis.

blender Blender Website: https://www.blender.org/

DIC Simulator Examples

This presentation will cover two examples:

> To show the basic capabilities, we will examine the simple case of a plate exposed to an impact.

To show additional capabilities we will examine a test-planning case where we look at real bomb test data.

Plate Example

The workflow for the plate example problem looks like this:

Create a finite element model and run an eigen solution to compute modes
Apply a virtual impact to the plate and generate modal responses

Export the plate mesh to blender

Generate a speckle pattern on the plate

Set up scene including camera and lighting parameters

Load in a calibration target and render a few calibration images

Run a Python script that deforms the mesh and renders the image.

Load calibration images and deformation images into DICe to run the analysis.

Examine the response data and fit modes to it.

Plate Example: Finite Element Model

Finite element model parameters:

> Dimensions: 6” x 7”7 x 0.125”

> Material: Steel

> 18207 nodes, 15000 hex elements

bl
)
]
=
e
Q
]
&)
o
-
=
w
@)
it
c
o v
&
-
O
£
~
D)
]
g
=
O
>

(o]
1)
Q
=)
-
=)
w
c
@)
QO
®
1S
e
D)
w
=
(D)
(@)
o
—
=)
@)
@)
1)
(o]
==

<
w
Q
g
)
O
&
A
=
w
S
3)
o
-
-
as

After solving for the eigenvalues, the
model was “skinned”, turning the

The skinned model was imported into

Python so an impact could be applied.

The connectivity matrices and nodal
coordinates were saved to external

files that could be read by Blender.

Plate Example: Applying the impact

An impulse signal was generated with a sine-
squared pulse.

0.000

The force was applied perpendicular to the plate

at the corner in the modal domain

0.2% modal damping was assumed.

0

The modal displacements over time were saved
so they could be loaded into Blender.

An alternative would be to save the displacement at
every point, but it is more efficient to load in mode
shapes and gs and multiply them in the code.

The maximum displacement was 0.06 inches.

0.005

500

0.010

1000

1500

0.015

2000

0.020

2500

3000

0.025

3500

4000

Plate Example: Setting up the Blender Scene: Loading in the Mesh

The mesh 1s loaded using a Blender Python script, creating the mesh using the connectivity matrix
and the vertex coordinates from the finite element model.

R s ae o v
25 V79| Verts076,202 | Edges0/12.400 | Faces0/6,200 | Tis112.400 | Mem:32.564 | geometry. otject

) View et i ot emptote ([ZIE] corm ong rerver [L3 I TTIL B R serpe) R [% evoce | @ %] % tIREE” ~ Gl 2]

Plate Example: Creating a Speckle Pattern

A speckle pattern image was created using a Python script that randomly draws black dots of a
specified size on a white background.

The Blender mesh was unwrapped and the image was applied to the surface as a texture using the UV
mapping capabilities in Blender.

- Bender [C\Usente

TR TRETTD
= EERTE R

e
T E—T

=N & T 3 0 | 3 v ¢ [BN EnGo- T4 s o Feanex 1[0 1] %1 ILE 7 con CWEE] 5@ BT

Plate Example: Scene Setup __

To render an image, Blender needs a Camera and a Light source. These need to be added to the scene.
In addition to the camera positions and rotations, focal length and depth of field can also be specified.

Several different types of lights are available, and the intensity of each light can be set.

Orthographic Panoramic
* Focal Length: ELULRY Millimeters
 start: 0.001 »
End 100000 7
A
Camera Presets v &;é o o ’ o —
= e :
Inverse Square 41V Difiuse
« Distance: 30.000 *
G 7
* Distance: 0.00 ») * Fstop: 128.0 *
Buffer Shadow Ray Shadow
Composition Guides v
7 pammmn
— end: 0150)" intensity: ~ 1.000 '

I .

Plate Example: Calibrate Cameras _ I

While we could theoretically create a perfect calibration because we have exact knowledge of camera
positions, focal lengths, etc., a more realistic simulator would include camera calibration.

Created an image using Correlated Solutions’ printable calibration targets, and applied the image to a
mesh in the same way as was done for the plate mesh.

Calibration target can be programmatically loaded and positioned; a 6D space of calibration target
positions and orientations can be sampled to generate calibration images.

Plate Example: Deform Mesh and Render

A Blender Python script was written that loads in the mesh data,
mode shapes, and modal gs at each time step and deforms the mesh
appropriately.

The Blender Render has a maximum of 16x oversampling for
antialiasing. While it produces visually acceptable images, it was
found to be insufficient to accurately render subpixel motions.

Instead the images are rendered at some factor of oversampling (6-
10x) in addition to the native antialiasing.

Note that oversampling the image 10x creates a 100x larger image, and can
have a significant etfect on render times for each image!

A downsample script using the Python Image Library reduces the
image size to the desired resolution using a Bicubic interpolant.

Images seem identical to the naked eye, but a subtraction of the two
images shows subpixel motions.

11 samples.

Blender Native Antialiasing Strategy

Reference Image and Image 100

Subtraction of Image and Image 100
(values out of 255)

Plate Example: DICe Analysis

Calibration images were loaded into DIC
RMS Error: 0.127045

Average Epipolar Error: 0.202899

Analysis was performed on the images.

Stereo Camera Calibration
FILE SELECTION PATTERN OPTIONS CALIBRATION
symmetric dot grid with special comer dot: ¥

\virtual_dic\cal_images

) © 000 0 aa
. pattern spacing size

rms error: 0.1270

avg epipolar error: 0.202;

extension select files to skip (
png

preview adaptiv 0 (counts) cal0000_0.png
0 = 107 cal_0001_0.png

cal_0002_0.png
sample le 3, cal_0003_0.png
cal_0004_0.png
cal_0005_0.png
cal_0006_0.png

PREVIEW LEFT PREVIEW RIGHT

g

7...&9.03 1% B% ::x% 4.’5 '& 6%7&1‘&3»9
2:9.2 0.4 ARA8 AR
4.4‘ r’ 2 a! 4! "1’1 r.a‘:% 49

e B]

[BN I BN BN BN BN BN BN]
[X) S _l{_._f-.
e

o deselect):

Plate Example: DIC results

Data looked reasonable
Was able to fit modes reasonably

Some problems with the data that are outside of the DIC
simulator (at this point I was just trying to get it to work, not
worrying about data quality):
Leakage — Displacements did not ring down by the end of the
measurement frame

Aliasing — Integrated using sampling frequency 10x the bandwidth
of interest, downsampled time signals without any kind of
antlahasmg filter.

Noise-free input FFT — Hammer impact was perfectly measured,
so dips in frequency domain go down to zero. Image data has an
effective notise floor, so FRF goes to infinity at these locations.

-
o
w

o)
°
2
=

=)

@
=
i
=
(O]

e
o
)

—— Experimental Data (1)
— — Analytical Fit (1)

800 1000
Frequency (Hz)

Bomb Example: Test Planning __ I

The second example will illustrate the test-planning capabilities of the DIC simulator framework,
using a bomb mesh and real test data.

A bomb mesh had been created for creating illustrations in test reports

> No physics behind the mesh (mode shapes, mass or stiffness matrices, etc.)

> Simply a set of vertices and their connectivity. .

Bomb Example: Mapping the Mesh to Test Data

We have test data at a number of locations on the Bomb, so we need to expand those to the Bomb mesh.

One popular technique is SEREP, which can expand data from one set of degrees of freedom to another set if a set of basis shapes is available.
Create a set of basis shapes using beam bending shapes of the bomb case plus fin motions

Can use geometry to project beam translations and rotations to the skin of the bomb.

SEREP techniques were used to solve for the “modal gs” that correspond to the expanded beam shapes.

Bomb Example: Scene Setup, Deformation, and Render _ I

Two Cllights and a “wide angle” camera was used, emulating the constraints of the laboratory in which the system was
tested.

Only using one camera to look at motion magnification feasibility i

Model was deformed and rendered at each step in the test data.

Bomb Example: Motion Magnification

Can utilize the DIC Simulator to determine if deflections are large enough to see what you want to
see:

> In this example fins move significantly, but we are unable to magnify motions on the case.

p——— g

> Or we can increase displacements in the simulator to see how much motion would be required before the
desired analysis technique can be performed.

What can still be investigated:

How much oversampling of the image 1s needed to resolve a specified displacement?

It would be easy to do a noise floor study where we move the part along an axis increasingly small amounts and see
what the computed displacement is. Since we know the actual displacement we imparted, we can easily compare
the true and computed displacements to understand where the simulator breaks down.

Implement noise sources to simulate their effect:
Blender can simulate depth of field — this is a constraint on real systems

Blender can do refraction, so we could theoretically simulate heat waves — requires a more sophisticated renderer
that may take a lot longer to draw a scene

Blender assumes a perfect pinhole camera, but we can implement lens distortions on the images by using the
OpenCV library on the output images.

Can play with inferior speckle patterns (not black and white, but some grey), nonuniform lighting, specular
reflections, etc.

Can add noise to the images

Implement more challenging problems:
Could render a finite element simulation where element death occurs:
Explosions
Impacts

Investigate more interesting geometry

