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• Ultrafast and Transient Plasmonics/Metasurfaces

— Optical creation of a plasmonic grating

— Ultrafast switching using epsilon near zero (ENZ) media

• High Harmonic Generation in ENZ

• Ultrafast switching of dielectric metasurface
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What is a "Metasurface"

The 2D version of a 3D Metamaterial

3D

e

• Metallic or Dielectric

• Resonant or non-resonant
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Nature Photonics 8, 889 (2014)

A collection of structures<X where electric/magnetic reflection, transmission &
scattering can be controlled by each element
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Transient Plasmonics/Metasurfaces

http://physicsworld.com/cws/article/news/2012/sep/28/
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Photo-"perturb" electrons:
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Guo et. al., Nat. Photon, (2016)

• How does a photoexcited e-plasma behave as a plasmonic material ?
• What can we do with transient plasmonics?
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Transient THz GaAs Plasmonic Metasurfaces

THz Optical pump
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What are the ultrafast dynamics of plasmon formation
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Processes involved:

(1). Creation of non-equilibrium hot electron

distribution by the optical pump;

(2). Hot electron thermalization (equilibrium

within themselves & Fermi Dirac distribution);

(3). Electron-phonon coupling. —500 fs
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Within the —500 fs electron-phonon cooling process:

• Plasma frequency increase ;

• Plasma damping decreases.
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Ultrafast Switching Using Metasurfaces/Plasmonics

Switch on

NTT Tech. Rev.

8 11
■ 

•8, s
I

• 1 Switch off

■
■

•In

Wavelength

• Perfect Plasmonic Absorber

• Dielectric Metasurfaces
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"Perturbing" a Plasmon Mode: Ultrafast Polarizer/Switch Concept
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Doped Cd0
An Amazing Plasmonic Material!
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Boltasseva & Atwater, Science 331, 290 (2011)

• Cubic rocksalt lattice
(similar to NaCI)

• n-doping (In populates
the Cd sublattice with a
3+ charge)

http://chemistry.stackexchange.com/questions/23673/rock-salt-structure
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• Doping density can reach > 1020cm-3
• Plasma frequency tunable from near to long IR
• Mobilities in the 100's, sometimes comparable with III-V's.

Material Carriers
Iern-3]

CdO Dy

CdO Dy

AZO (2 wt%).4

ITO (10 wt%)4

9.94x1G19

3.70x1G2°

7.2x1020

7_7x1020

Mobility
[crn2N-s]

61=0 62 at 61=0 62 at si=-2

474 2770 0.19 0.30

359 5350 0.13 0.20

48 6970 0.21 0.39

36 7122 0_69 1.29

Sachet et. al., Nat. Mat (2015)
J-P Maria, NC State
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Cd0-based Perfect Absorber
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Sachet et. al., Nat. Mat (2016)

• Berreman-type perfect absorber for p-polarized incident light at 50 degrees.
• >90% reflectance for s-polarized light.

Sandia
National
Laboratories

11



Ultrafast Amplitude Switching of the Perfect Absorber

Monochromator
& extended InGaAs detector

2000

1500

Tu
a 500

Pump

(0.60 eV)

-500  '
2.0 2.1 2.2

Wavelength (pm)

\OD
2 0

1 0

Sandia
National
Laboratories

Absolute reflectance mod lation from 1% to 86%!
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Ultrafast Polarization Switch
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High Harmonic Generation (HHG) enhanced by Plasmonics

Gas-phase HHG enhanced by plasmonics:

VE-nh field

Input pulse

EUV

S. Kim et al, Nature, 453, 757(2008)
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Harmonic order

Low damage threshold
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2.08 pm, 50 fs HHG

HHG in an ENZ Material

75 nm

Gold CdO: In Mg0

Robust structure

1E12/1E012

300 
0 45

200

0

0 100
0

MgO

CdO: In(

Gold

High field enhancements

300 350 400 450
VVavelength (nm)

Moderate absorption length

15



HHG Spectrum
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HHG Spectral Shift and Broadening

Wavelength (nm)
48O460 440 420 400 380

' 10 (GW/cm2)
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Harmonic shift and broadening:
• Rapidly evolving cavity--unique hot electron dynamics
• Reduced HHG temporal pulse duration
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Nature Photonics 8, 889 (2014)

• Strong field confinement
• Small mode volume
• Low damage threshold
• Loss
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Adv. Opt. Mat. 2015, NL

2015, ACS Phot. 2016

• Large mode volume
• More flexibility with electric

and magnetic polarizabilities
• Higher damage threshold

Adv. Opt. Mat. 2016,

NL 2016

Can be made from semiconductors >> optical
generation of carriers
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GaAs Dielectric Metasurface

GaAs disk height "300nm

Different diameters

• Extremely low loss below
bandgap

• Crystalline
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Mie resonances in Dielectric
spheres
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Dielectric Metasurface: Ultrafast Tuning
of Magnetic Dipole Mode
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Summary

• Ultrafast and Transient Plasmonics/Metasurfaces

— Optical creation of a plasmonic grating

— Ultrafast switching using epsilon near zero (ENZ) media

• High Harmonic Generation in ENZ

• Ultrafast switching of dielectric metasurface
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Ultrafast Switching Using Metasurfaces/Plasmonics

NTT Tech. Rev.

• Dielectric Metasurfaces

• Perfect Plasmonic Absorber
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High-harmonic Generation (HHG)

Gas-phase HHG:

HHG in Xenon gas:
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M. Ferray et al, Journal of Physics B, 453, 757(1988)

Pros:
• Virtually no damage threshold

Cons:
• Low efficiency

Solid-phase HHG:

HHG in ZnO:
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S. Ghimire et al, Nature Physics, 7, 138(2010)
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Pros:
• High efficiency (high atom density)
• Low pump threshold

Cons:
• Difficult phase-matching
• Absorption above bandgap
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