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e Ultrafast and Transient Plasmonics/Metasurfaces
— Optical creation of a plasmonic grating
— Ultrafast switching using epsilon near zero (ENZ) media

e High Harmonic Generation in ENZ

o Ultrafast switching of dielectric metasurface
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What is a “Metasurface”

The 2D version of a 3D Metamaterial e Metallic or Dielectric
 Resonant or non-resonant
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A collection of structures<A where electric/magnetic reflection, transmission &
scattering can be controlled by each element
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Transient Plasmonics/Metasurfaces
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https://en.wikipedia.org/wiki/Surface_plasmons

http://physicsworld.com/cws/article/news/2012/sep/28/

Photo-"create” electrons: Photo-"perturb” electrons:
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* How does a photoexcited e-plasma behave as a plasmonic material ?
 What can we do with transient plasmonics?

5



Sandia
m National
Laboratories

Transient THz GaAs Plasmonic Metasurfaces

Structured-optical pump THz probe (S-OPTP):

Optical pump THz
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What are the ultrafast dynamics of plasmon formation

Yang et. al., ACS Photonics, 4, 15 (2017)



Ultrafast Dynamics of Plasmon Formation

Processes involved:
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(1). Creation of non-equilibrium hot electron
distribution by the optical pump;

(2). Hot electron thermalization (equilibrium
within themselves & Fermi Dirac distribution);
<100 fs

(3). Electron-phonon coupling. ~500 fs
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Within the ~500 fs electron-phonon cooling process:

* Plasma frequency increases;
* Plasma damping decreases.
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Ultrafast Switching Using Metasurfaces/Plasmonics
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“Perturbing” a Plasmon Mode: Ultrafast Polarizer/Switch Concept
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Doped CdO rh) e
An Amazing Plasmonic Material!

Interband losses

1/

Cubic rocksalt lattice
(similar to NaCl)
n-doping (In populates
the Cd sublattice with a
3* charge)

Carrier mobility (cm?/V-s)

http://chemistry.stackexchange.com/questions/23673/rock-salt-structure

Near-IR

Doping density can reach > 102°cm?3
Plasma frequency tunable from near to long IR
Mobilities in the 100’s, sometimes comparable with llI-V’s.

Visible

uv

Boltasseva & Atwater, Science 331, 290 (2011)

Matenal Carriers Mobility g1=0 g at e1=0 g2 at e1=-2
[em] [em2/V-s] [em 1]
CdO:Dy 9.94x10™ 474 2770 0.19 0.30
CdO:Dy 3.70x10% 359 9350 0.13 0.20
AZO (2 wt%)* 7.2x10% 48 6970 0.21 0.39
ITO (10 wi%)* 7.7x102 36 7122 069 1.29

J-P Maria, NC State
Sachet et. al., Nat. Mat (2015)
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CdO-based Perfect Absorber
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Sachet et. al., Nat. Mat (2016)

» Berreman-type perfect absorber for p-polarized incident light at 50 degrees.
+ >90% reflectance for s-polarized light.
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Ultrafast Amplitude Switching of the Perfect Absorber ) .
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Monochromator
& extended InGaAs detector

Ultrafast Polarization Switch

Predicted polarization input/output:
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2.23 ym

Nat. Phot. 2017
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High Harmonic Generation (HHG) enhanced by Plasmonics ) .

_ )
Gas-phase HHG enhanced by plasmonics:
i — -
Input pulse ‘*”-«- 3
"#.«»Euv
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\S. Kim et al, Nature, 453, 757(2008) )

r ~N Low damage threshold
Solid-phase HHG enhanced by plasmonics:

Wavelength (nm)
a  2100nm

100fs 420 350 300 263 233
- 1 | | 1 |

Spectral intensity (a.u.)

\G' Vampa et al, Nature Physics, 13, 659(2008) )
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HHG in an ENZ Material
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HHG Yield (a.u.)
2

HHG Spectrum
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HHG Spectral Shift and Broadening ) .
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Harmonic shift and broadening:

* Rapidly evolving cavity--unique hot electron dynamics
* Reduced HHG temporal pulse duration

- J
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Metasurfaces

Dielectric

Tellurium Silicon

Adv. Opt. Mat. 2015, Adv. Opt. Mat. 2016,
2015, ACS Phot. 2016 NI 3016

* Large mode volume

* More flexibility with electric
and magnetic polarizabilities

* Higher damage threshold

Can be made from semiconductors >> optical
generation of carriers
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GaAs Dielectric Metasurface
GaAs disk height ~300nm
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Dielectric Metasurface: Ultrafast Tuning
of Magnetic Dipole Mode

Modulation 50x of substrate Resonance tuning by 30 nm
() T AR A
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* Fast recovery due to surface recombination
(~2.5 ps from low power expts)

*  Maximum index modulation is -0.14
due to Drude dispersion
and band filling effects

Reflectance
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Nat. Comm. 2017
20



Sandia
m National
Laboratories

Summary

e Ultrafast and Transient Plasmonics/Metasurfaces
— Optical creation of a plasmonic grating
— Ultrafast switching using epsilon near zero (ENZ) media

e High Harmonic Generation in ENZ

e Ultrafast switching of dielectric metasurface
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Ultrafast Switching Using Metasurfaces/Plasmonics
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High-harmonic Generation (HHG)

(Gas-phase HHG: )
] Pros:
g . g  Virtually no damage threshold
HHG in Xenon gas: L 1
: Cons:
P u « Low efficiency
\M. Ferray et al, Journal of Physics B, 453, 757(1988) )
: )
(Solld-phase HHG:
Pros:
* High efficiency (high atom density)
o * Low pump threshold
HHG in ZnO:
& ors Cons:
« Difficult phase-matching
« Absorption above bandgap
\S' Ghimire et al, Nature Physics, 7, 138(2010) )
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