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e Metamaterials & Metasurfaces: refresher, definitions, etc.

e Linear Metasurfaces:
— Optical magnetic mirror
— Huygens meta-optics

e Emitters + Metasurfaces

e Nonlinear optics with all-dielectric metasurfaces:

e Outlook on future 3D fabrication
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Dielectric Metamaterials

Clausius-Mossoti or Effective medium approximation
Lorentz-Lorenz
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What is a “Metasurface”

The 2D version of a 3D Metamaterial e Metallic or Dielectric
 Resonant or non-resonant

"‘A@m‘!

B £ £ £ £ C £ £ S )

Boeing RF NIM™=*

A collection of structures<A where electric/magnetic reflection, transmission &
scattering can be controlled by each element
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How to Fabricate Dielectric Metasurfaces Iehorories

e Desired: arrays of high index, wavelength scale “particles”

=

diameter diameter,
height

Tellurium

n~5in the IR Silicon (n~3.8) on glass

= e ' e

1.53x1.53x1.7um3
for 1.5um

for 10um



Dielectric Metasurfaces using IlI-V i)
Semiconductors (n~3.5, near IR)

Epitaxially grown: MBE, MOCVD Etch mask
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GaAs Dielectric Metasurface

GaAs disk height ~300nm 3

. . — D=360nm
Different diameters ==u ety
——D=280nm,/ F, M
0,
2 s
2
S
3 > E M
Cqﬁ) 75}
v |
o
112
0
* Extremely low loss below &
bandgap = | M
* Crystalline "E

0 1 . ] i 1 ) ] g 1
800 900 1000 1100 1200 1300
Wavelength (nm)



National

Using Magnetic Resonances: The “Magnetic Mirror” )

it does not exist in nature

Array of magnetic dipoles

Magnetic dipole responds in phase with the electric field (in microwave language,
this represents an artificial magnetic conductor)
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Phys. Rev. Lett. 108, 097402 (2012)



Optica 1, 250 (2014)

Optical Magnetic Mirror
Absolute Phase of Reflected Wave
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Controlling Spectral Location of Mie Modes ) &=,

e Change the dielectric environment (liquid crystals: ACS Nano 9,
4308 (2015) )

e Change aspect ratio of cubes or cylinders
* Introduce a “perturbation” (cut)
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Controlling Spetral Location of Mie Modes: h)
Changing the Aspect Ratio

S
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Nanoletters 2017
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Controlling Mie Modes: L

introducing a cut
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Huygens Metasurfaces: Control of Scattering ) .

e Huygens’ Principle:

— Every point on a wavefront is a
secondary source of outgoing

waves Image: Wikipedia
Huygens, Traité de la Lumiére, (1690)
Love, Phil. Trans. R. Soc. Lond. A 197, 1
(1901)

— Crossed E & H dipoles (Love’s
formalism)

(a)rfﬁ(ﬁ\k (b) ‘k\ErH H
e Huygens’ sources A kEy\r = ‘\ IF‘
k ‘ Ho ®F /
eo J‘H | Yy
(c)

— Produce forward-onl —, N, | E
- , - a +
propagating elementary waves : | I
' ED ] wo oS ; @}
- [ w 1. -
(R. Zia)
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Huygens Metasurface Phase
Plate: Vortex Beam

3o om-.. " 4]
® % Q1 \.‘. 02
8 “ \‘
e “eQ3
u' ﬁ."2' n - - i 'l L L L

Bk oy oo, G4 03 02 01 0 01 02 03
0 s . = .
700 800 900 1000 Distance from centre of vortex (mm)

Lattice Periodicity a (nm)

16



Huygens metasurface hologram demonstrates complex ) S,
wavefront control

Section of our

_ Experiment
holographic metasurface

Intensity

Normal incident 1477nm laser passes
through the metasurface to create a
4-phase-level hologram 12 mm
behind the sample.

82% transmittance & 40%
imaging efficiency

Chong et al., ACS Photon. (2016) 17 17



Metasurfaces for Flat Optics: Summary ) i

School #1: “Huygens” metasurfaces
(ANU, Sandia, Argonne, Jena,...)

Pros: Easy fabrication

Cons: Needs small array for a single phase
“element”

School #2: High aspect ratio elements
(Harvard, Caltech, Technion,...)

Phase determined by
single element

Difficult fabrication

18



All-dielectric Metalenses: ) i,
Recent Literature
Broadband achromatic metalens Multiwavelenght metasurface lenses

490
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« Emitters + Metasurfaces
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Emitters Coupled to Metasurfaces

Simulation of emitter very close (~A) close
to dielectric optical mirror showed large
radiative enhancement.

Ensembles of colloidal QDs on top of

Si-metasurface: PL reshaping

pump beam

silicon
nanodisks

Staude et al, ACS Photonics 2015
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Single photon emitter (dopant in CNT) on top of
Si-metasurface: rotation of PL polarization
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See also work by Hong, Maier, Bonod, Belov, Krasnok, etc.
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Emission + All-dielectric Metasurfaces: ) i,
Recent work

White-light emission

T
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Sanz-Paz, M., et al. | Ha, S. T, et al. arXiv preprint
Nano Letters 18.6 (2018): 3481-3487. Makarov, S. V., et al. ACS Photonics 4.4 (2017): 728-735.

arXiv:1803.09993 (2018).
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Towards High Q: Broken Symmetry Resonators ) .

1.0 _
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low Q because these modes couple to free space
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High Q modes Using “Broken Symmetry” rh) pei.
Resonators

incident E,

wave
D \ wetHdgonubled
e M, digiglele
P miobekes

Broken symmetry system

External Waveﬁ P, (low Q)

A
Cavity perturbation

broad dig =
resonanc ;=

Reflec

J
M, (high Q)

can’t radiate in-plane

due to local field interactions

ACS Photonics 2016
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Embedding Emitters in Metasurfaces ) Sz,

a [ Gars [ AlGaAs |
#[ Gahs
M nAsQDs /I

I AIGa0 [ sio,

-
-
-
-
-

Lithography
ICP etch
Oxidation
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PL: Broken-symmetry Resonators
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Back-Focal Plane Emission i) e,

Laboratori

(Broken Symmetry Resonators)

Absorptance TE

1-1.5
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e Nonlinear optics with all-dielectric metasurfaces

28



Paths to Nonlinear Metasurfaces

Metallic/Plasmonic

Using metal no

Nature Photonics, 6(11),

+: Small mode v
-: Low efficiency

bined with an

nonlinearity®

Metallic metasurfaces
on llI-V heterostructures

+: Record high
-: Saturation

Dielectric

Adv. Opt. Mat. — aqy Opt. Mat. 2016,

2015,NL2015, | 7016
PRL 2012 ACS Phot.
2016

+: High nonlinear coefficient
materials (GaAs: ~200pm/V)
+: large mode volume

-: medium to low efficiency

29

Epsilon Near Zero

Sandia
National
Laboratori



Sandia
I‘l National
Laboratori

Optical Nonlinearities from Dielectric
Metasurfaces: Third Harmonic Generation (Si

Third harmonic wavelength (nm)
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Second Harmonic Generation from GaAs ) e

Laboratori

Metasurfaces
SHG wavelength (nm)
400 450 500 550 600
10000 ¢ - 1.0
- Log:

ACS Photonics 2018, 5, 1786-1793

Nano Letters 2016
Also ANU, Costa (ltaly)
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& Higher Q: SHG from Broken Symmetry

L
Metasurfaces
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Higher Harmonics: ) joums,
The “Optical Metamixer”
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Nature Comm. 2018
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Frequency mixing spectra ) fee,

11 peaks Photon energy (eV)
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Frequency mixing spectra ) fee,

11 spectral
peaks Photon energy (eV)
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Interlude: The Highest Nonlinearity from ) i

0.6
Metasurfaces (SHG)
/Nanoantennas”/metasurface 30 4J \ |
T % 5 %
g 0.2 /|\w / ]
W3 w wJ; <\ X
w3, oH——1 — v
—— o . Z dir'ec1t?on [nm] 20
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Quantum wells 4
Max efficiency: (c) o FFintensiy squared (kKW'em")
L] 3 . 2 v Ll = L) 2 T ‘..'- T
Brener (transmission): 2.3 mW/W O & I8P (x10) e L] P

Belkin (reflection, etched resonators): 17
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Belkin & Brener 2018, 18.2 mW/W?2
Xt 1.31%10° pm¥V~"
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Brener: Nature Communications 6, 7667 (2015)
Belkin & Alu, Nature 511, 65-69 (2014). 36



1 H ﬁg%gﬁal
Nonlinear Metasurfaces: Comparison ) o,

Metallic MS + Mie Resonator
Quantum Wells | MS

Reported
nonlinearity

“Material” chi(2)
—  Mode Depth

Mode overlap and
chi(2) utilization

—

Saturation and
damage threshold

—  Wavelength

~10-2 W/W?

~200 nm/V
~\/20
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~\/n
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visible to far IR

scalin
>3nd order

No (in mid IR)
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e Outlook on future (quasi) 3D fabrication
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Fabrication of 2D Metamaterials
Membrane Projection Lithography

Starting Substrate

o Create

Directional
Directional Evaporation
Evaporation

N\

Directional
Evaporation

Directional
Evaporation

Burckel et al, Adv. Mat. 2010
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“Wertical” Dielectric Resonators
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Achieving Huygens Point

Spectral Power
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Huygens Metasurfaces Using Out of Plane h) S

Resonators

42

National

Elliptical resonators: Huygens
behavior.

Maybe we can stack several
vertical resonators: >2n phase
shift

All CMOS compatible, 15t devices
in ¥1 month
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e Metamaterials & Metasurfaces: refresher, definitions, etc.

e Linear Metasurfaces:
— Optical magnetic mirror
— Huygens meta-optics

e Emitters + Metasurfaces

e Nonlinear optics with all-dielectric metasurfaces:

e Outlook on future 3D fabrication
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Mie-resonance Dielectric Metasurfaces

Mie resonances in Dielectric spheres
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Baranov, D.G., et al. Optica 4.7, 814-825, 2017
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Multi-layer GaAs Dielectric Metasurfaces sborsore

e Epitaxially grown 3X (AlGaAs + GaAs)
e Same fabrication steps as 1 layer

3 ((r \
o
b
= |
E
)
2
>
B
@ ' .
5 “ Simulation
(14
0.0

1.0 11 12 13 14 15
Wavelength (um)

; i

E

2

k)

o

>

8

8 Experiment

ol it o . g 1. o -

3 . . . 1.0 11 1.2 13 1.4 1.5

=» Potential path to 3D dielectric metamaterials Wavelength (um)

Liu et al, Adv. Opt. Matt 2016 16



Tellurium Cubic Resonators:
FDTD Simulation of the Reflected Wave

Simulated using as-made dimensions and measured optical constants
18

L

Electric

Resonance - 7 Lk, oc—F,
A=T7.4pm 0 . T,
Regular Dielectric Dielectric
0 Interface Resonator Array
-1.7 0 1.7

Magnetic Er oC +El-
Resonance

A=9.5um “magnetic” mirror

Regular Dielectric Dielectric
Interface Resonator Array
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. ;l- (]
nematic phase isotropic phase

J. Sautter et al., ACS Nano 9, 4308 (2015).

Dynamic Control Using Liquid Crystals

i

T<i'cypol. 1
1 T<T_xpol.|
§ 08 T>Tcypol._ 165
5 T>T_x pol. €
s | ' g g
S 04t & E
= Y & 1.6 @
@ =
0.2¢f 2 =
0 al 1 155
T . ! T T
=1 Nematic E || y 1 1
Ll nematic E 1 1 1 L
T it i 20 30 40 50 60
1 0
§ 08 Temperature ("C)
8
g 0.6 500 — 21°C
(o)
€ 04l 400 |——30C
£ 04 < — 41°%C
02} T 300f [ gg"g
8 —
. y \ X = 200 58°C
’-‘ — 62°C
1.55 1.6 1.65 1.7
Wavelength (um) L
0 LBAAALL L .
. 1.55 1.6 1.65 1.7
Tuning range 40 nm Wavelength (um)
°

Tuning contrast 500%
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Ge-based Fano metasurface design

Z 4 1.00
0.75
=
=
$0.50
ko)
d=2.53 um i
0.25
s=d/5 _
t=1.5um 0.00
Array Pitch:
a=b=42um

FDTD Simulation

Q-factor = 1300!

10.75 ,10.80 ,10.85

90 95 100 105 110 115 120
wavelength (um)

Design is scalable from near infrared through RF

ACS Photonics 2016
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High Q: Only a small array is needed

max

e =

[solated resonator 3x3 array

50 Campione, et al., ACS Photonics 3, 2362 (2016)



Out of Plane Dipole Modes

Symmetric Resonators

W™ b . Absorbances- pol|9(A) C ¢ JAbsorbance p-pol |9(A)0
6.4 6.4
5.2 6.2
- -

58 5.8

56

sin(0) sin(0)

56

]
]
=y

Broken-symmetry Resonators

g

Absorbance p-pol |9(A)D

Absorbance s-pollg(A)  §

-05 -0.5

6.4

6.2 6.2 1
i -1.5 g 1.5
6 6
-2 -2
5.8 o 5.8 25
56 3 56 -3
0 1 0 1
sin(0) sin(0)
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Low temperature

PL

2000 - «— Single QD emission!

- pump=1.2uW
= .
i 1000
=
A~

500 -

DR
O_

950 100010501100 1150 1200 1250 1300 1350
Wavelength (nm)

— QW gain
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Emitters (QDs) Coupled to “Fano” Metasurfaces:

QDs inside, Emission enhancement

)]
o

PL intensity (a.u.)

-0

0 11 12 13 14
Wavelength (um)

200 — 1.0
Unpattemed Reflectivity S1
Reflectivity S2
15000 (- Fano Reflectivity S3
z .
. z =
3 10000 - =y =
&, = 100 0.5%
- 3 =
o £ )
5000 = -
" o
0 3 il X, 0 " 1 i 1 i . o 0.0
1000 1100 1200 1300 1400 1.0 1.1 12 1.3 1.4
Wavelength (nm) Wavelength (um)
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Nonlinear Metasurfaces: Silicon vs llI-V’s

e Silicon is centrosymmetric = NO second order
nonlinearity

e Lots of 11I-V semiconductors have y(?
GaAs: ~200pm/V

Material deff (pm/V)

MgO:PPLM 14pmiy (typical)

KTP 3. 4pmi
BBO 2 5pmif
LBO 0.85pmiv

-V

low index

54
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How to Increase SHG Efficiency from " .
all-Dielectric Metasurfaces

e Find another high index material with higher y? @
— GaAs already has (2> 200pm/V

e Find combination of modes and symmetry that maximize

nonlinear polarization Pir . « 2y E? EZ,...

Nz "y Tz
3

—— D=360nm|
—— D=320nm|

* Increase Q of resonances (E;;5ige < Q) @ ’

Reflectivity
deSpueqg syen
=
=

900 1000 1100 1200 1300
55 Wavelength (nm)

e clan)
S
(=]



0.04

SHG power vs pump power

Pump peak intensity (GW/cm®)

4

0.4

v L I L

7250
150}
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100 F
E “I ; ‘§~?6 g 0 2
s C
o _
> 3 Pump of

| A 2

% 0.1F @ Experiment y 10Gcm
g Quadratic Fitted EF ' ge.

0.01

[ Unpatterened

P | -

0.1

1

10

Pump power (mW)

» Quadratic relationship sustained at lower pump
power.

 Irreversible damage of GaAs occurred > ~1.5
GW/cm?.

» Two-photon-absorption of GaAs foIIO\ged y tflermal .
_ _ heng [{u, et al, in preparation 56
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Polarization, Selection Rules

|E|? enhancement for both
electric and magnetic dipole
resonance.

Z{microns)

(I,, proportional to | ?)

Z{microns)

iz 006 000 006 0.1 e -0, 000 006

*¥(microns)

T

Z

pump

(x-pol)
There are only E, and E,
component inside the GaAs

resonators. GaAs

resonator

*¥{microns)

20 2) po Do
EX* =2y?E"E!

xxy ' x

Orthogonal SHG polarization
compared to the pump is
expected
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Pump
. T . = -
E-dipole resonance [ @ ° M-dipole resonance @

800 < 16000 -
= 700 £ 14000
& 600" S 12000
Q 1 O
o 5004 150 = 1%888:
& 3‘88E S 6000
g ] = ]
S 2001 2 4000
5] ] @)
S 100- | O 2000
7 0- 180 = 0-
2 100 £ 2000-
2 200 £ 4000
2 200 2 50001
— 5001 210 O 10000 -
QO 500" T 12000
% 700 - 214000 -

800 - 16000 -

270 270

This is not consistent with bulk (2

What happens at the M-dipole resonance?
1. Surface nonlinearity changes symmetry to mm2

EX =2y EE;

XZ

can be large, considering the large field enhancement at the surface for this mode.

2. SHG is above bandgap of GaAs, absorption favors SHG generated at the surface.

Not predicted: Carletti et al,: “Enhanced second-harmonic generation from magnetic resonance in

AlGaAs nanoantennas”, Optics Express, 23, 26544 (2015)
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School #2: High Aspect Ratio Dielectric
Metasurfaces for Flat Optics

Use “tiny waveguides”, birefrigent because of asymmetrical cross section.
Phase given by orientation (Faraon, Hasman, Capasso)

N 8 8 8 0
)
00 0 0 0 0
N 0 0 00
No o0 00 00
"N\ o 00 0 0
o 0 0 0 0 0

e 0 0 0 & N\ N NV NV V0
o 0 0 0 O N\ N NV 8 b 0
e 0 0 0 0 o
e 0 0 0 & N N 8 0 0 0
o 0 0 0 o0 o
e 0 o

I

>

Faraon et al, Nat. Nanotech 2015 Capasso et al, Science 2016
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Nonlinear Optics from Plasmonic Metasurfaces

 Relaxed phase matching conditions

Resonant enhancement of EM field induced by Plasmon excitation
(@)

5nm Ta205(
Glass

- [5ome0] [ werss |
i~ @ @
!‘ \/!' _—
.
H m; gm |
A T 1|
lhl II k
R | y
Y. Kivshar et al, Laser Photonics
Review, 9, 195 (2015) A (nm)
467 514 593 700 812
FOCUS | REVIEW ARTICLES
Sartorello, et al. ACS Photonics 3.8

PUBLISHED ONLINE: 31 OCTOBER 2012 DOI: 10.1038/NPHOTON.2012.244

(2016): 1517-1522.

Nonlinear plasmonics

Martti Kauranen' and Anatoly V. Zayats?

Plasmonic structure: small mode volume
(usually only uses surface nonlinearities)

SHG efficiency ~ 10-°
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Ultrafast Switching Using Metasurfaces

!

Switch on ;] Switch off
=
’

’

1
L)
L)
)

Y

NTT Tech. Rev. Wavelength

o oumeens
AZO . CB
L] ° S e
e Dielectric Metasurfaces L. i
o ]
LH / “S0| T\ \“-\‘
-10 N
- ()
2.%‘ :

it Vurgaftmana
<111> <001>

JAPN (2001)
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10 Bulk Gm
e ’/ To first order, the laser beam gets absorbed,
“, A
20t S_cBl generates electrons and holes, and these cause
2 e 1 a refractive index change.
> 10t e
O g : :
o pump Then the Mie resonances will change
& oo HH :
= “.‘ZI:*F:;EE?QH (spectrally) since resonances occur at ~A/n
LH f\fﬁg e W
A0t/ N
(b)
_E-G 1 1 L 1 1 1
02 01 o 01 02
<111> <001=>
Kk (2nra)
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Dielectric Metasurface: Ultrafast Tuning ) i
of Magnetic Dipole Mode

Modulation 50x of substrate

Resonance tuning by 30 nm

54 1 ps cold I I I I(C) E
““““““““““ G X 1060 @)
hO 1 /g
A mJ/cm
-0.2 :‘:5»0
£ 1020
j~pr0be @ MD E
1-04 s 1000 F
— GaAs substrate x20 ) E
— GaAs metasurface @ 980
1 1 1 1 — o \ 4
0 5 10 15 0.6 960 Experiment 1
Pump—probe delay (ps) 0 5 10 15

Pump-—probe delay (ps)

* Fast recovery due to surface
recombination (~2.5 ps from low power
expts)

*  Maximum index modulation is -0.14
due to Drude dispersion
and band filling effects

Reflectance

960 1000 1040
Probe wavelength (nm’

Nat. Comm. 2017
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Resonant Mode Field Profiles

= 10.8 um resonance

60

140

20

0 2 z-directed
magnetic dipole

—

Transmission
o o o
= o S

<
)

\__|

2

1'0 lrl 12
Wavelength [pm]
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PL intensity (arb. unit)

Photoluminescence ) i,

10 T T T T T T
<47 280 nm
14 J/\ 300 nm
|« 320 nm
3 )
= [x26 ‘k 340
@ — @ dlLL

b - Absorbance s- A)

3000 -
M E|
. - oo ——m— | I el
) . 0
2000 - 2
10.5 § c 250 1 - - i {-15 0
i Q ~ |
14 < ll'
| B
1000 - h '
1 1200 - 120
-25
|H]
: — 0.0 1150 ' : ‘ -3 IHol
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GaAs Fano Resonators: Q ~ 600!

1.0 . .
0.9 | |

. 0.7 [
g Ub | | PwHM=1.6 nm W,

% 0.5k | Q~600
a 04F ]
. Highest DR Q-factor bt
0.3} reported to date 'SEZZ 32 ]
0.2F I

900 950 1000 1050
Wavelength (nm)

» GaAs is direct bandgap - lower absorption losses
« GaAs has a large %@ = nonlinear devices (SHG, down-conversion, etc.)
« Can incorporate InGaAs quantum wells for gain and photon detection
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