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• Metamaterials & Metasurfaces: refresher, definitions, etc.

• Linear Metasurfaces:

— Optical magnetic mirror

— Huygens meta-optics

• Emitters + Metasurfaces

• Nonlinear optics with alI-dielectric metasurfaces:

• Outlook on future 3D fabrication
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What is a "Metasurface"

The 2D version of a 3D Metamaterial

3D

e

• Metallic or Dielectric

• Resonant or non-resonant
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How to Fabricate Dielectric Metasurfaces

• Desired: arrays of high index, wavelength scale "particles"

*1114

Tellurium

n-5 in the IR

1.53x1.53x1.7µm3

dia. ter

for 10um

dia ter,
height

Silicon (n-3.8) on glass

for 1.5um
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Dielectric Metasurfaces using 111-v

Semiconductors (nru3.5, near IR)

Epitaxially grown: MBE, MOCVD Etch mask
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GaAs Dielectric Metasurface

GaAs disk height "300nm

Different diameters

• Extremely low loss below
bandgap

• Crystalline
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Using Magnetic Resonances: The "Magnetic Mirror"

it does not exist in nature

Array of magnetic dipoles

-->"› '">"›

Magnetic dipole responds in phase with the electric field (in microwave language,

this represents an artificial magnetic conductor)
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Optical Magnetic Mirror
Absolute Phase of Reflected Wave
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Controlling Spectral Location of Mie Modes

• Change the dielectric environment (liquid crystals: ACS Nano 9,
4308 (2015) )

• Change aspect ratio of cubes or cylinders

• Introduce a "perturbation" (cut)
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Controlling Spetral Location of Mie Modes:
Changing the Aspect Ratio
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Controlling Mie Modes:

introducing a cut
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Huygens Metasurfaces: Control of Scattering

• Huygens' Principle:

— Every point on a wavefront is a
secondary source of outgoing

waves

• Huygens' sources

— Crossed E & H dipoles (Love's
formalism)

— Produce forward-only
propagating elementary waves

(a)

(c)

Image: Wikipedia
Huygens, Trait6 de la Lumiére, (1690)

Love, Phil. Trans. R. Soc. Lond. A 197, 1
(1901)
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Huygens metasurface hologram demonstrates complex
wavefront control

Normal incident 1477nm laser passes
through the metasurface to create a
4-phase-level hologram 12 mm
behind the sample.

Section of our
holographic metasurface
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National
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2-rr}

82% transmittance & 40%
imaging efficiency

Chong et al., ACS Photon. (2016)
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Metasurfaces for Flat Optics: Summary

School #1: "Huygens" metasurfaces
(ANU, Sandia, Argonne, Jena,...)

Pros: Easy fabrication

Cons: Needs small array for a single phase
"element"

School #2: High aspect ratio elements
(Harvard, Caltech, Technion,...)
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All-dielectric Metalenses:
Recent Literature

Broadband achromatic metalens
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Chen, W. Ti., et al. Nature nanotechnology
13.3 (2018): 220.
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Arbabi, E., et al.
Nature communications 9.1 (2018): 812.
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Yuan, J., et al. Journal of Optics
19.10 (2017): 105002.

A Metalens with a Near-Unity
Numerical Aperture

Paniagua-Dominguez, R., et al.
Nano letters 18.3 (2018): 2124-2132.
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Chen, B. H., et al. Nano letters
17.10 (2017): 6345-6352.

Nano-optic endoscope
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Pahlevaninezhad, H., et al.
Nature Photonics (2018): 1.
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• Metamaterials & Metasurfaces: rel. ,,fir., definitions, etc.
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• Emitters + Metasurfaces

• Nonlinear optics with all-dielectric metasurfaces:
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Emitters Coupled to Metasurfaces

Simulation of emitter very close (—X) close
to dielectric optical mirror showed large
radiative enhancement.

Ensembles of colloidal QDs on top of
Si-metasurface: PL reshaping

Staude et al, ACS Photonics 2015
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Single photon emitter (dopant in CNT) on top of
Si-metasurface: rotation of PL polarization
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See also work by Hong, Maier, Bonod, Belov, Krasnok, etc.
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Emission + All-dielectric Metasurfaces:
Recent work

White-light emission
from silicon nanospheres
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Active Tuning of Spontaneous Emission
by Mie-Resonant Dielectric Metasurfaces
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Lasing action in active
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Towards High Q: Broken Symmetry Resonators

Re
fl

ec
ti

on
 T
ra

ns
mi

ss
io

n 

1.0

0.8

0.6

0.4

0.2

0 0

6.5 7.0 7.5 8.0 8.5 9.0 9.5

Wavelength (pm)

low Q because these modes couple to free space

Sandia
National
LaboratoO



High Q modes Using "Broken Symmetry"

Resonators
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Embedding Emitters in Metasurfaces

a • GaAs AIGaAs

• InAs QDs

b

l/ Lithography
ICP etch
Oxidation

AIGaO siOx
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Back-Focal Plane Emission
(Broken Symmetry Resonators)
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Metallic/Plasmonic

Using metal no earity:

Nature Photonics, 6(11),

+: Small mode v
-: Low efficiency

bined with an
"engin ed"
nonlinearit

Metallic metasurfaces
on III-V heterostructures

Nat. m. 2013, 2015

+: Record high
-: Saturation

PRL 2012

Dielectric
Silicon

000

Adv. Opt. Mat.

2015, NL 2015,

ACS Phot.

2016

GaAs

Adv. Opt. Mat. 2016,

NL 2016

+: High nonlinear coefficient
materials (GaAs: —200pm/V)
+: large mode volume
-: medium to low efficiency

29

Epsilon Near Zero

+: u rm nonlinearity, field



Optical Nonlinearities from Dielectric

Metasurfaces: Third Harmonic Generation (Si)
Third harmonic wavelength (nm)

Strong enhancement near magnetic dipole
resonance

Silicon is passive & has no x(2)

Nano Letters (2015)
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Second Harmonic Generation from GaAs

Metasurfaces
2w
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Higher Q: SHG from Broken Symmetry

Metasurfaces

13-fold enhancement of SHG in Fano
metasurface compared with the
nanodisk metasurface
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Higher Harmonics:

The "Optical Metamixer"
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Nature Comm. 2018
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Interlude: The Highest Nonlinearity from

Metasurfaces (SHG)
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Nonlinear Metasurfaces: Comparison

Metallic MS +
Quantum Wells M

Mie Resonator
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ISHG iNj (x(2))2
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Outline
• Metamaterials & Metasurfaces: rel. ,,fir., definitions, etc.

• Linear Metasurfaces:

— Optical magnetic mirror

— Huygens meta-optics

• Emitters + Metasurfaces

• Nonlinear optics with all-dielectric metasurfaces

• Outlook on future (quasi) 3D fabrication
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Directional

Evaporation

Directional

Evaporation

Fabrication of 2D Metamaterials
Membrane Projection Lithography
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Achieving Huygens Point
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Huygens Metasurfaces Using Out of Plane

Resonators

• Elliptical resonators: Huygens
behavior.

• Maybe we can stack several
vertical resonators: >27 phase
shift

• All CMOS compatible, 1st devices
in —1 month

Sandia
National
Laboratori
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Summary

• Metamaterials & Metasurfaces: refresher, definitions, etc.

• Linear Metasurfaces:

— Optical magnetic mirror

— Huygens meta-optics

• Emitters + Metasurfaces

• Nonlinear optics with alI-dielectric metasurfaces:

• Outlook on future 3D fabrication
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Mie-resonance Dielectric Metasurfaces

Mie resonances in Dielectric spheres
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Multi-layer GaAs Dielectric Metasurfaces

• Epitaxially grown 3X (AIGaAs + GaAs)

• Same fabrication steps as 1 layer

4Potential path to 3D dielectric metamaterials

1.0

0 0
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Wavelength (µrn)
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Wavelength ([trn)

1 5
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Tellurium Cubic Resonators:
FDTD Simulation of the Reflected Wave

Simulated using as-made dimensions and measured optical constants
18
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Dynamic Control Using Liquid Crystals
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z •

Ge-based Fano metasurface design

k ,NvE

x

d= 2.53 µm

s=d/5

t = 1.5 jam

Array Pitch:

a=b= 4.2 µin

FDTD Simulation

1.00

0.75

5

0a)0.50 1.0
71 )

0.25 -0.5

0.00
.10.75 .10.80 . 10..85 .

Q-factor = 1300!

9.0 9.5 10.0 10.5 11.0 11.5 12.0
wavelength (i.,tm)

Design is scalable from near infrared through RF
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High Q: Only a small array is needed
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Out of Plane Dipole Modes
Symmetric Resonators

Broken-symmetry Resonators
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Emitters (QDs) Coupled to "Fano" Metasurfaces
QDs inside, Emission enhancement

15000

1000 1100 1200 1300
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LaboratoriNonlinear Metasurfaces: Silicon vs III-V's

•Silicon is centrosymmetric 4 NO second order
nonlinearity

• Lots of 111-v semiconductors have x(2)
GaAs: -200pm/V

Material cleft (prnikq

2rr. TIN (typical)

KTP 3.4pniN

EEC 2.5prriN

LBO 0.85prnN
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How to Increase SHG Efficiency from

all-Dielectric Metasurfaces

• Find another high index material with higher X(2)

— GaAs already has X(2)> 200pm/V

• Find combination of modes and symmetry that maximize

nonlinear polarization P2ax °C 2x (x2). z gyp En...

• Increase Q of resonances (Einside (X Q)

3
- D-360nm
- D-320nm
- D-280nm
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Laboratori
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SHG power vs pump power

Pump peak intensity (GW/cm2)
0.04 0.4

rs250,
4 / 150

8 10 12

Pump of
-10GW/cm2

0.1 1

Pump power (mW)

• Quadratic relationship sustained at lower pump
power.

• Irreversible damage of GaAs occurred > —1.5
GW/cm2.

• Two-photon-absorption of GaAs follo polglzy
u' 

ti-ei
' 

errnale
ai in preparation

rlamaria rli la innraacarl fraa rarriar ahcnrnfinn

10

56

Sandia
National
Laboratories



Polarization, Selection Rules

El2 enhancement for both
electric and magnetic dipole
resonance.

(12. proportional to 1.1

There are only Ex and Ez

component inside the GaAs
resonators.

0.09
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This is not consistent with bulk x(2)

What happens at the M-dipole resonance?

1. Surface nonlinearity changes symmetry to mm2

Ex c° = 2 Xx(xz)ExE7

can be Iarge, considering the large field enhancement at the surface for this mode.

2. SHG is above bandgap of GaAs, absorption favors SHG generated at the surface.

Not predicted: Carletti et al,: "Enhanced second-harmonic generation from magnetic resonance in

AlGaAs nanoantennas", Optics Express, 23, 26544 (2015)
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School #2: High Aspect Ratio Dielectric

Metasurfaces for Flat Optics

Use "tiny waveguides", birefrigent because of asymmetrical cross section.

Phase given by orientation (Faraon, Hasman, Capasso)

b
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••••••
• or • •• ••
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Faraon et al, Nat. Nanotech 2015
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Nonlinear Optics from Plasmonic Metasurfaces

• Relaxed phase matching conditions
• Resonant enhancement of EM field induced by Plasmon excitation
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Review, 9, 195 (2015)

Nonlinear plasmonics
Martti Kauranen' and Anatoly V. Zayats2

F•

1 T-shaped

G shaped

Active MM

-

FOCUS I REVIEW ARTICLES
PUBLISH ED ONLINE: 31 OCTOBER 20121001: 10.1038/NWICTTON.2012.244

ky

467 514 593

(a) (b)
P--.._ _...11 5 nm Ta205

4N Glass

= 411
3

o
o

100 nm
x 4(.10 nrn

700 812

Sartorello, et al. ACS Photonics 3.8
(2016): 1517-1522.
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Ultrafast Switching Using Metasurfaces

NTT Tech. Rev.
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To first order, the laser beam gets absorbed,
generates electrons and holes, and these cause
a refractive index change.

Pump Then the Mie resonances will change
(spectrally) since resonances occur at —X/n
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Dielectric Metasurface: Ultrafast Tuning
of Magnetic Dipole Mode
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Resonant Mode Field Profiles

FDTD simulations at the X = 10.8 vim resonance
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GaAs Fano Resonators: Q 600!

1.0
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• GaAs is direct bandgap 4 lower absorption losses
• GaAs has a large X(2) 4 nonlinear devices (SHG, down-conversion, etc.)
• Can incorporate lnGaAs quantum wells for gain and photon detection
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