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"Flat" nonlinear optics
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Intersubband transitions

n-doped quantum wells
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Key features:

• Control of energy levels positions, transition dipole moments, lifetime

• Tailored linear and nonlinear optical properties for TM-polarized light

• Ultra-fast electron dynamics (0.3-3 ps)

• Various materials AllnAs/InGaAs/InP, GaAs/AIGaAs, GaN/AlInGaN...

• Foundation of quantum cascade lasers
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Intersubband nonlinearities

Giant nonlinearities for wave mixing
Mid-IR SHG X(2) 104-105 pmN

(E. Rosencher et al. 1989; M. Fejer et al. 1989)
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Ultrafast optical switching
Akiyama et al, IEEE Photon. Technol. Lett. 14, 495 (2002)
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Nonlinear polaritonic metasurfaces

Quantum-engineered intersubband transitions

Electromagnetically-engineered modes in metallic nanostructures

Large-area ultrathin metasurfaces with tailored nonlinear response
Lee et al., Nature, 511, 65-69 (2014)
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Semiconductor heterostructure design
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Nanoresonator design
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Characterization
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Experiment
FF intensity squared (kW2/cm4)
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Gradient nonlinear metasurfaces
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Experment
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Intensity Saturation

FF intensity squared (kW2/cm4)
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Potential improvements in performance
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Up- and down-conversion
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Down-conversion setup
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Down-conversion results
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Optical switching and power limiting
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Preliminary experimental results
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Summary

Highly-nonlinear metasurfaces by combing QM engineering of

intersubband transitions and EM engineering of plasmonic reso

nators

Giant nonlinear response of 1.2x106pm/V for SHG

Continuous local phase control of the nonlinear response

Up- and down-conversion: 0.13 % down-conversion efficiency

demonstrated; 0. 75% up-conversion efficiency is expected

Metasurfaces for optical power limiting and all-optical control
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