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“Flat” nonlinear optics

Phase-matching
Bulk: /;1 + /;2 = /€3 Surface: &, +k,, =k,
— requires special efforts — satisfied automatically
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Intersubband transitions

n-doped quantum wells EA 4 o,

——— U/

Key features:

e Control of energy levels positions, transition dipole moments, lifetime
e Tailored linear and nonlinear optical properties for TM-polarized light
e Ultra-fast electron dynamics (0.3-3 ps)

e Various materials AllnAs/InGaAs/InP. GaAs/AlGaAs, GaN/AllnGaN...

e Foundation of quantum cascade lasers



Intersubband nonlinearities

Giant nonlinearities for wave mixing
Mid-IR SHG % 104-105 pm/V
(E. Rosencher et al. 1989; M. Fejer et al. 1959)
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+ Other nonlinear processes of 2"d and higher orders
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Ultrafast optical switching
Akiyama et al, IEEE Photon. Technol. Lett. 14, 495 (2002)
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Nonlinear polaritonic metasurfaces

Quantum-engineered intersubband transitions
+

Electromagnetically-engineered modes in metallic nanostructures

» Large-area ultrathin metasurfaces with tailored nonlinear response
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Semiconductor heterostructure design

Heterostructure Nonlinear susceptibility
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Nanoresonator design
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Characterization

Heterostructure Metasurface
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Experiment
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Gradient nonlinear metasurfaces

Xinw = Xip €xp (—i39)

Xitr = Xuws €Xp (—ig)

Xowr = Xrne €Xp ((39)

2 _ ., 2) .
Xiwr = Xizg €Xp (@)
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Tymchenko ef al., Phys. Rev. Lett. 115, 207403 (2015)




Experment

RCP SH output (a.u.)
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Intensity Saturation
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Potential improvements in performance
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Up- and down-conversion
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Down-conversion setup
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Down-conversion results
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Optical SW|tch|ng and power limiting
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Preliminary experimental results
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Summary

e Highly-nonlinear metasurfaces by combing QM engineering of
intersubband transitions and EM engineering of plasmonic reso
nators

e Giant nonlinear response of 1.2x10° pm/V for SHG
e Continuous local phase control of the nonlinear response

e Up- and down-conversion: 0.13 % down-conversion efficiency
demonstrated; 0.75% up-conversion efficiency is expected

o Metasurfaces for optical power limiting and all-optical control
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