

A Mathematical Framework for Uncertainty Quantification in Multimodal Image Analysis via Probabilistic Clustering Models

Maximillian G. Chen, David J. Stracuzzi, and Michael C. Darling

Sandia National Laboratories, Albuquerque, NM

Background

- Most statistical and machine learning models only provide point estimates of parameters. However, statistical models are fundamentally stochastic: predicted and inferred values are random variables and inherently uncertain.
- Uncertainty quantification (UQ) provides a measure of sufficiency of the available data and the selected modeling approach for answering a question of interest.
- If we have multiple datasets from different sources, we need to be able to determine which datasets are useful in analysis and decision-making.

Consensus clustering (ensemble clustering): determination of an *overall (consensus) clustering* or *partition* of the observations in a dataset that agrees the most with the *source-specific clusterings*.

Goal: Develop a mathematical framework for relating the *uncertainty of the overall consensus clustering* to the *uncertainty of the source-specific clusterings* and apply it to the problem of segmenting multiple types of imagery over the same scene (multimodal imagery).

Bayesian Consensus Clustering (BCC) [4, 5]

1. Assumptions

- Source-specific clusterings adhere loosely to the overall consensus clustering.
- Source-specific and overall clusterings all have K clusters
- Data from M sources: $\mathbb{X}_1, \dots, \mathbb{X}_M$ (each data source may have disparate structure)
- Each data source is available for a common set of N objects
- X_{mn} : data m for object n
- Probability model for each data source: $f_m(X_{mn}|\theta_m)$
- Each X_{mn} , $n = 1, \dots, N$, is drawn independently from a K -component mixture distribution specified by the parameters $\theta_{m1}, \dots, \theta_{mK}$.
- $L_{mn} \in \{1, \dots, K\}$: component corresponding to X_{mn}
- $C_n \in \{1, \dots, K\}$: overall mixture component for object n
- The source-specific clusterings $\mathbb{L}_m = (L_{m1}, \dots, L_{mN})$ are dependent on the overall clustering $\mathbb{C} = (C_1, \dots, C_N)$:

$$P(L_{mn} = k | C_n) = \nu(k, C_n, \alpha_m)$$

where α_m adjusts the dependence function ν .
Data \mathbb{X}_m are independent of \mathbb{C} conditional on the source-specific clustering \mathbb{L}_m .

1. Assumptions (cont.)

- Conditional model:

$$P(L_{mn} = k | X_{mn}, \mathbb{C}_n, \theta_{mk}) \propto \nu(k, C_n, \alpha_m) f_m(X_{mn}|\theta_{mk})$$

We assume ν has the simple form

$$\nu(L_{mn}, C_n, \alpha_m) = \begin{cases} \alpha_m, & \text{if } C_n = L_{mn} \\ \frac{1-\alpha_m}{K-1}, & \text{otherwise} \end{cases}$$

where $\alpha_m = P(L_{mn} = C_n)$.

- Assume a Dirichlet(β) prior for $\Pi = (\pi_1, \dots, \pi_K)$, where $\pi_k = P(C_n = k)$
- Probability that an object belongs to a given source-specific cluster:

$$P(L_{mn} = k | \Pi) = \pi_k \alpha_m + (1 - \pi_k) \frac{1 - \alpha_m}{K - 1}$$

Conditional distribution of \mathbb{C} :

$$P(\mathbb{C} = k | \mathbb{L}, \Pi, \alpha) \propto \pi_k \prod_{m=1}^M \nu(L_{mn}, k, \alpha_m)$$

Joint marginal distribution of $\mathbb{L}_1, \dots, \mathbb{L}_M$:

$$P(\{L_{mn} = k_m\}_{m=1}^M | \Pi, \alpha) \propto \sum_{k=1}^K \pi_k \prod_{m=1}^M \nu(k_m, k, \alpha_m)$$

2. Conjugate Prior Estimation

Data:

- \mathbb{X}_i has a normal-gamma mixture with cluster-specific mean and variance

$$X_{mn} | L_{mn} = k \sim N(\mu_{mk}, \Sigma_{mk})$$

- μ_{mk} is a D_m dimensional mean vector, where D_m is the dimension of the data source m

Σ_{mk} is a $D_m \times D_m$ diagonal covariance matrix,

$$\Sigma_{mk} = \text{Diag}(\sigma_{mk1}, \dots, \sigma_{mkD_m})$$

- Prior distribution for θ_{mk} : D_m dimensional normal-inverse-gamma distribution

$$\theta_{mk} = N\Gamma^{-1}(\eta_{m0}, \lambda_0, A_{m0}, B_{m0})$$

where η_{m0} , λ_0 , A_{m0} , and B_{m0} are hyperparameters.

It follows that

$$\frac{1}{\sigma_{mk}^2} \sim \text{Gamma}(\lambda_0, \eta_{m0})$$

$$\mu_{mk} \sim N(\eta_{m0}, \frac{\sigma_{mk}^2}{\lambda_0}) \text{ for } d = 1, \dots, D_m$$

2. Conjugate Prior Estimation (cont.)

Conjugate prior distributions:

- $\alpha_m \sim \text{TBeta}(\alpha_m = 1, b_m = 1, \frac{1}{K})$ (prior for α_m is uniformly distributed between $\frac{1}{K}$ and 1)

$\pi \sim \text{Dirichlet}(\beta = (1, 1, \dots, 1))$ (prior for Π is uniformly distributed on the standard $(M-1)$ -simplex

$$\theta_{mk} \sim N\Gamma^{-1}(\eta_{m0}, \lambda_0, A_{m0}, B_{m0})$$

Conditional posterior distributions (iteratively sampled via MCMC):

$$\Theta_m | \mathbb{X}_m, \mathbb{L}_m \sim p_{\theta_m}(\theta_{mk} | \mathbb{X}_m, \mathbb{L}_m) \text{ for } k = 1, \dots, K$$

$$\theta_{mk} \sim N\Gamma^{-1}(\eta_{m0}, \lambda_0, A_{m0}, B_{m0})$$

$$\mathbb{L}_m | \mathbb{X}_m, \Theta_m, \alpha_m, \mathbb{C} \sim P(k | \mathbb{X}_m, C_n, \alpha_m) f_m(X_{mn} | \theta_{mk})$$

$$\alpha_m | \mathbb{C}, \mathbb{L}_m \sim \text{TBeta}(\alpha_m + \tau_m, b_m + N - \tau_m, \frac{1}{K}) \text{ where } \tau_m \text{ is the number of samples } n \text{ satisfying } L_{mn} = C_n$$

$$\mathbb{C} | \mathbb{L}_m, \Pi, \alpha \sim P(k | \Pi, \{L_{mn}, \alpha_m\}_{m=1}^M) \text{ for } n = 1, \dots, N, \text{ where } P(k | \Pi, \{L_{mn}, \alpha_m\}_{m=1}^M) \propto \pi_k \prod_{m=1}^M \nu(k, L_{mn}, \alpha_m)$$

$$\Pi | \mathbb{C} \sim \text{Dirichlet}(\beta_0 + \rho_k), \text{ where } \rho_k \text{ is the number of samples allocated to cluster } k \text{ in } \mathbb{C}$$

Multimodal Image Segmentation Uncertainty Analysis

Problem Statement

- Use the *variance* as our measure of uncertainty
- Uncertainty of the overall consensus clustering: $\text{Var}[P(C_n = k)]$
- Uncertainty of the source-specific clusterings: $\text{Var}[P(L_{mn} = k_m)]$
- Question: Is there a function f such that

$$\text{Var}[P(C_n = k)] = f(\text{Var}[P(L_{mn} = k_m)]_{m=1}^M)?$$

Overall Clustering Uncertainty ($M = 2$)

$$\text{Var}[P(C_n = k | \mathbb{L}, \Pi, \alpha)] \propto \text{Var}[\pi_k \prod_{m=1}^M \nu(L_{mn}, k, \alpha_m)]$$

For $M = 2$,

$$\text{Var}[P(C_n = k | \mathbb{L}, \Pi, \alpha)] \propto \text{Var}[\pi_k [\nu(L_{1n}, k, \alpha_1)][\nu(L_{2n}, k, \alpha_2)]] \propto \begin{cases} \text{Var}[\pi_k \alpha_1 \alpha_2], & \text{if } L_{1n} = k, L_{2n} = k \\ \text{Var}[\pi_k \alpha_1 \frac{1-\alpha_2}{K-1}], & \text{if } L_{1n} = k, L_{2n} \neq k \\ \text{Var}[\pi_k \frac{1-\alpha_1}{K-1} \alpha_2], & \text{if } L_{1n} \neq k, L_{2n} = k \\ \text{Var}[\pi_k \frac{1-\alpha_1}{K-1} \frac{1-\alpha_2}{K-1}], & \text{if } L_{1n} \neq k, L_{2n} \neq k \end{cases}$$

Since π_k , α_1 , and α_2 are all dependent,

$$\text{Var}(\pi_k \alpha_1 \alpha_2) = \text{Cov}(\pi_k^2, \alpha_1^2 \alpha_2^2) + (\text{Var}(\pi_k) + [E(\pi_k)]^2)(\text{Var}(\alpha_1 \alpha_2) + [E(\alpha_1 \alpha_2)]^2) - [Cov(\pi_k, \alpha_1 \alpha_2) + E(\pi_k)E(\alpha_1 \alpha_2)]^2$$

$$\text{Var}(\alpha_1 \alpha_2) = \text{Cov}(\alpha_1^2, \alpha_2^2) + (\text{Var}(\alpha_1) + [E(\alpha_1)]^2)(\text{Var}(\alpha_2) + [E(\alpha_2)]^2) - [Cov(\alpha_1, \alpha_2) + E(\alpha_1)E(\alpha_2)]^2$$

$$\text{Var}(\pi_k \alpha_1 \alpha_2) = \text{Cov}(\pi_k^2, \alpha_1^2 \alpha_2^2) + (\text{Var}(\pi_k) + [E(\pi_k)]^2)(\text{Cov}(\alpha_1^2, \alpha_2^2) + [E(\alpha_1^2)]^2) + (\text{Var}(\alpha_1) + [E(\alpha_1)]^2)(\text{Var}(\alpha_2) + [E(\alpha_2)]^2) - [Cov(\alpha_1, \alpha_2) + E(\alpha_1)E(\alpha_2)]^2 - [Cov(\pi_k, \alpha_1 \alpha_2) + E(\pi_k)E(\alpha_1 \alpha_2)]^2 = \text{Cov}(\pi_k^2, \alpha_1^2 \alpha_2^2) + (\text{Var}(\pi_k) + [E(\pi_k)]^2)(\text{Cov}(\alpha_1^2, \alpha_2^2) + [E(\alpha_1^2)]^2) + (\text{Var}(\alpha_1) + [E(\alpha_1)]^2)(\text{Var}(\alpha_2) + [E(\alpha_2)]^2) - [Cov(\pi_k, \alpha_1 \alpha_2) + E(\pi_k)E(\alpha_1 \alpha_2)]^2$$

Conclusion

The uncertainty for the overall clustering is directly proportional to the uncertainties for the adherence of the source-specific clusterings to the overall clustering, which affect the results of the source-specific clusterings.

Future Work

- Deriving expressions in closed form, particularly with the covariances
- Extending to the case of any number of M data sources
- BCC Implementation: Nonparametric distributions, different numbers of clusters and semantic meanings of clusters for each data source and overall clustering
- Analogous derivations for other uncertainty measures (standard deviation, entropy)
- Frequentist approach to consensus clustering and uncertainty quantification

Ongoing Uncertainty Quantification Work

- Empirical multimodal image analysis using Gaussian mixture models and nonparametric mixture models [6, 2]
- Supervised classification in image analysis [7]
- Seismic onset detection [8]
- URL classification [1]
- Visualizing clustering and uncertainty results for time-dependent data [3]

Simulation One Results

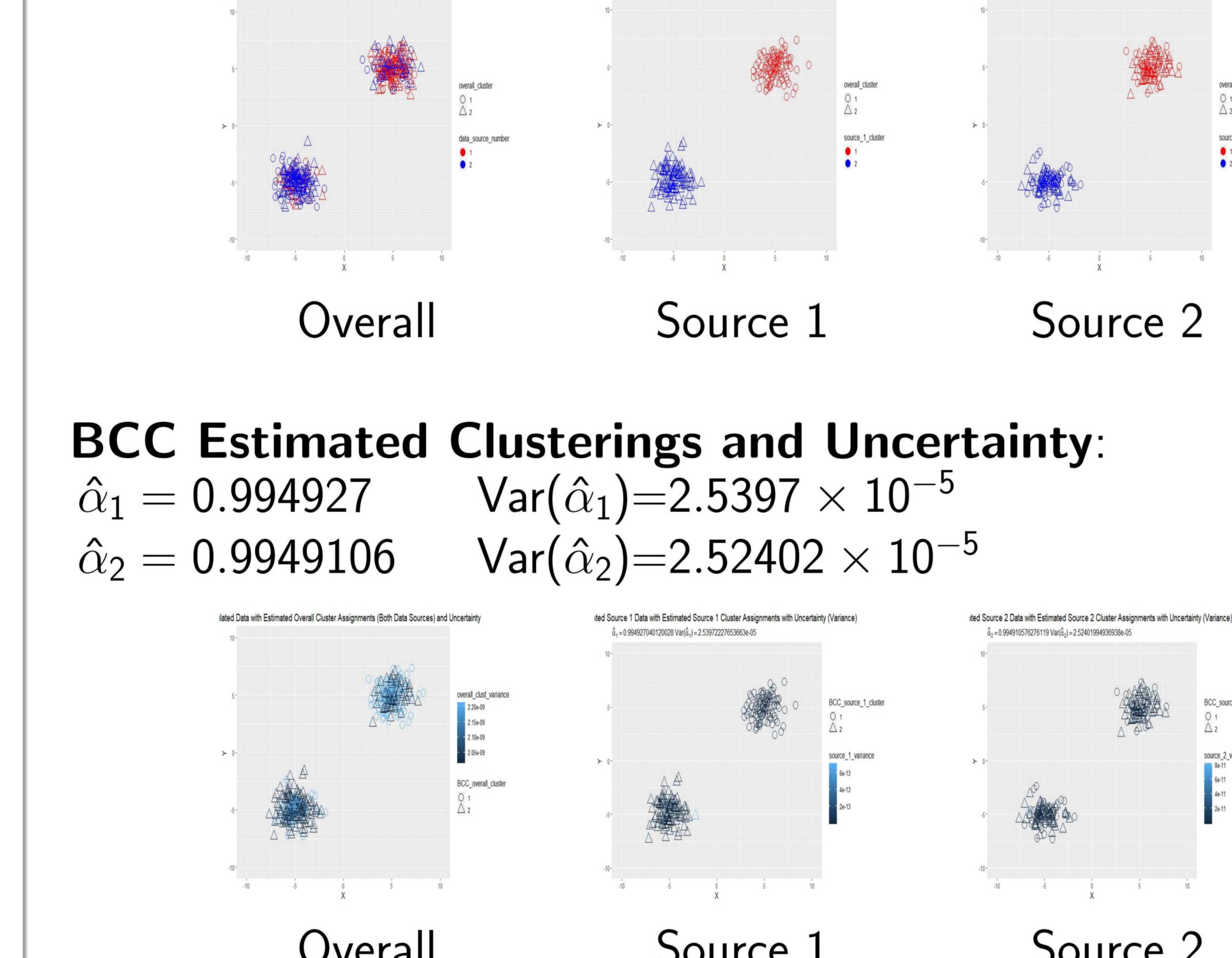
Generate simulated datasets $\mathbb{X}_1 : 2 \times 200$ and $\mathbb{X}_2 : 2 \times 200$:

- Let \mathbb{C} define two clusters, where $C_n = 1$ for $n \in \{1, \dots, 100\}$ and $C_n = 2$ for $n \in \{101, \dots, 200\}$.
- Set $\alpha_1 = 1$ (perfect relationship) and $\alpha_2 = 0.5$ (no relationship).
- For $m = 1, 2$ and $n = 1, \dots, 200$, generate $L_{mn} \in \{1, 2\}$ with probabilities $P(L_{mn} = C_n) = \alpha$ and $P(L_{mn} \neq C_n) = 1 - \alpha$.
- For $m = 1, 2$, draw values X_{mn} from a $N_2([5, 5]', I_2)$ distribution if $L_{mn} = 1$ and from a $N_2([-5, -5]', I_2)$ distribution if $L_{mn} = 2$.

Analysis Details:

- Run BCC to obtain overall and source-specific clusterings of two clusters each. ($K = 2$)
- 10,000 MCMC iterations using the R package bayesCC
- Point estimates of clustering probabilities: MAP estimates

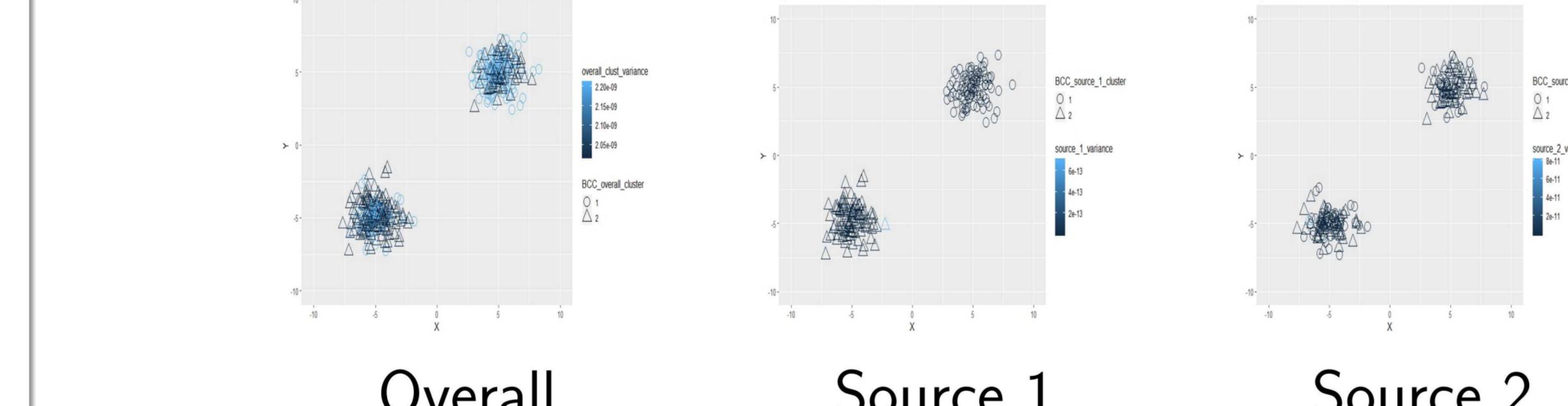
Simulated Data and Clusterings:



BCC Estimated Clusterings and Uncertainty:

$$\hat{\alpha}_1 = 0.994927 \quad \text{Var}(\hat{\alpha}_1) = 2.5397 \times 10^{-5}$$

$$\hat{\alpha}_2 = 0.9949106 \quad \text{Var}(\hat{\alpha}_2) = 2.52402 \times 10^{-5}$$



Simulation Two Results

Generate simulated datasets $\mathbb{X}_1 : 2 \times 200$ and $\mathbb{X}_2 : 2 \times 200$:

- Let \mathbb{C} define two clusters, where $C_n = 1$ for $n \in \{1, \dots, 100\}$ and $C_n = 2$ for $n \in \{101, \dots, 200\}$.
- Draw α from a Uniform(0.5,1) distribution. Let $\alpha_1 = \alpha_2 = \alpha$. The true $\alpha = 0.8595756$.
- For $m = 1, 2$ and $n = 1, \dots, 200$, generate $L_{mn} \in \{1, 2\}$ with probabilities $P(L_{mn} = C_n) = \alpha$ and $P(L_{mn} \neq C_n) = 1 - \alpha$.
- For $m = 1, 2$, draw values X_{mn} from a $N_2([1.5, 1.5]', I_2)$ distribution if $L_{mn} = 1$ and from a $N_2([-1.5, -1.5]', I_2)$ distribution if $L_{mn} = 2$.

Analysis Details:

- Run BCC to obtain overall and source-specific clusterings of two clusters each. ($K = 2$)
- 10,000 MCMC iterations using the R package bayesCC
- Point estimates of clustering probabilities: MAP estimates

Simulated Data and Clusterings:

