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Background

Most statistical and machine learning models only provide point
estimates of parameters. However, statistical models are
fundamentally stochastic: predicted and inferred values are
random variables and inherently uncertain.

► Uncertainty quantification (UQ) provides a measure of sufficiency
of the available data and the selected modeling approach for
answering a question of interest.

► If we have multiple datasets from different sources , we need to
be able to determine which datasets are useful in analysis and
decision-making.

Consensus clustering (ensemble clustering): determination of
an overall (consensus) clustering or partition of the observations in
a dataset that agrees the most with the source-specific clusterings.

Goal: Develop a mathematical framework for relating the
uncertainty of the overall consensus clustering to the uncertainty of
the source-specific clusterings and apply it to the problem of
segmenting multiple types of imagery over the same scene
(multimodal imagery).

Bayesian Consensus Clustering (BCC) [4, 5]

1. Assumptions
► Source-specific clusterings adhere loosely to the overall

consensus clustering.
Source-specific and overall clusterings all have K clusters
Data from M sources: X1, ..., XM (each data source may have
disparate structure)

► Each data source is available for a common set of N objects
► Xmn: data m for object n

Probability model for each data source: fm(Xn19m)
Each Xmn, n = 1, N, is drawn independently from a
K-component mixture distribution specified by the parameters
9m1, •••,9mx-•

► Lmn {1, ..., K}: component corresponding to Xmn
► Cn E {1, ..., K}: overall mixture component for object n
► The source-specific clusterings = (Lmi, LmN) are

dependent on the overall clustering C = CN):

P(Lmn = klCn) = v(k, Cn, am)

where am adjusts the dependence function v.
Data Xm are independent of C conditional on the
source-specific clustering _dm.

1. Assumptions (cont.)
► Conditional model:

P(Lmn = klXmn, Cn, Oink) CX v(k, Cn, am)fm(Xmn

► We assume v has the simple form

v(Lmn, Cn, am)
if Cn Lmn

otherwise

Omk)

where am = P(Lmn = Cn).
► Assume a DirichletP) prior for n (71, ..., 7-rK), where

'ffk = 13(Cn = k)
► Probability that an object belongs to a given source-specific

cluster:

P(Lmn = kln) + (1 7k)

1 — am 

K 1
► Conditional distribution of C:

13(Cn j a) CX v(Lmn,

m=1

k, am)

Joint marginal distribution of _di, ...,
K M

P({Lmn = a) 0( >_:7rk v(km, k, am)
k=1 m=1

kmlin°7-11 11)

2. Conjugate Prior Estimation
Data:
Xi has a normal-gamma mixture with cluster-specific mean
variance

Xmn1Lmn = k (N.) Al(p,mk, Emk)

► ,amk is a Dm dimensional mean vector, where Dm is the
dimension of the data source m

► Emk is a Dm X Dm diagonal covariance matrix,
Emk = Diag(amk1, • • • , gmkDm)

► Prior distribution for (9 mk: Dm dimensional
normal-inverse-gamma distribution

9 mk — NI- l(rimo, Ao, Amo, Brno)

where N-10, Ao, Arno, and Brno are hyperparameters.
It follows that

2 Gamma(Amod, Bmod)

/1mkd r•-) Nerimo,a+) for d 1, ..., Dm
rn kd

and

2. Conjugate Prior Estirnation (cont.)
Conjugate prior distributions:

(N) TBeta(am = 1, bm = 1, ik-) (prior for am is uniformly
distributed between k and 1)
") Dirichlet( 30 = (1,1, ..., 1)) (prior for n is uniformly

distributed on the standard (M — 1)-simplex
mk ^-) All--1(Tim0, AO, AmO, Bm0)

Conditional posterior distributions (iteratively
sampled via MCMC):
em x in, m

e_ m,
where

Pm(OrnkIX, _dm) for k= 1, K

Omk A/F-1(77/7-1k, Ak, Arno, Brno)

am, C (N.) P(k Xmn, Cn, 9 mk, am) for n= 1, N,

13(k1Xmn, Cm 9 mk, am)x v(k, G,am)fm(XmnlOmk).

• am IC, Ism ") TBeta(am Tm, bm N — Tm, )-), where Tm is the
number of samples n satisfying Lmn Cn•

► C n, a P(k n, {Lmn, am}inW) I) for n= 1, ..., N, where

P(k n, {Lmn, am} m=1) a 7rk v(k, Lmn, am)
m=1

DirichletPo p), where pk is the number of samples
allocated to cluster k in C

Multimodal Image Segmentation Uncertainty Analysis

Problem Statement

_ Use the variance as our measure of uncertainty

Uncertainty of the overall consensus clustering: Var[P(Cn = k)]

- Uncertainty of the source-specific clusterings: Var[P(Lmn = km)]

► Question: Is there a function f such that
Var[P(Cn — k)] = f(Var[P(Lmn krna4-1)?

Overall Clustering Uncertainty ( M = 2)

Var[P(Cn = k n, a)] oc Var[ffk k, am)]
m 1

For M = 2,

Var[P(Cn = k1L, n, a)] a Varf7rk[v(Lln, k, cci)][v(L2m
Vav a r[r [ kk e2]i( :1,

Var[7-rk1K—c-a2],

Va r [7k 

Since 7k, al, and a2 are all dependent,

Var(7rkai(x2) = Cov(4,, c4a21 (Vareirk) [E(7-rk)r)(Var(ccia2)
[E(aia2)]2) — [Cov(7-rk, ccia2) E(7k)E(cvicv2)]2
Cov(cq, ceD (Var(ai) [E(ai)]2)(Var(a2) [E(a2)]2)
[Cov(ai, az) + E(cei)E(a2)]2

Cov(4,, (2 1ceD (Var(7-rk) [E(7-rk)r)(Cov(c4_,

(Var(ai) [E(ai)]2)(Var(a2) [E(a2)]2) — tCov(ai, cc2)
[E(cei 2)]2

k, ce2)]f

Var(aia2)

Var(7-rkaice2)

[E(aia2)]2) — [Cov(7-rk, ccia2) E k) E (cei 2)]2
Cov(4,, (24aD (Vareffk) [E(7k)]2)(Cov(4

(Var(ai) [E(cciA2)(Var(a2) [E(a2)]2))
[Cov(7k, cvicc2) E k) E 2)]2

if Lin = k, L2n

if Lin = k, L2n

if Lin 1 ky L2n

if Lin 1 k, L2n

)

1 k

1 k

Simulation One Results

Generate simulated datasets Xi : 2 x 200 and X2 : 2 x 200:

Let C define two clusters, where Cn = 1 for n E {1, ..., 100} and
Cn = 2 for n {101, ..., 200}.

2. Set al = 1 (perfect relationship) and a2 = 0.5 (no relationship).

3. For m= 1, 2 and n= 1, ..., 200, generate Lmn {1, 2} with
probabilities P(Lmn = Cn) = a and P(Lmn / Cn) = 1 — a.

4. For m= 1, 2, draw values Xmn from a N2([5, 5]', /2) distribution if
1 and from a N2([ 5, 5]', /2) distribution if Lmn 2.Lmn

Analysis Details:

► Run BCC to obtain overall and source specific clsuterings of two
clusters each. (K = 2)

10,000 MCMC iterations using the R package bayesCC

Point estimates of clustering probabilities: MAP estimates

Simulated Data and Clusterings:

nulated Data with Actual Overall Cluster Assignments (Both Data Sources) (a1 = 1 a2 = as)
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Conclusion

The uncertainty for the overall clustering is directly proportional to the
uncertainties for the adherence of the source-specific clusterings to the

overall clustering, which affect the results of the source-specific clusterings.

Future Work

Deriving expressions in closed form, particularly with the covariances

Extending to the case of any number of M data sources

► BCC Implementation: Nonparametric distributions, different numbers of clusters
and semantic meanings of clusters for each data source and overall clustering

Analogous derivations for other uncertainty measures (standard deviation,
entropy)

► Frequentist approach to consensus clustering and uncertainty quantification

Ongoing Uncertainty Quantification Work

► Empirical multimodal image analysis using Gaussian mixture models and
nonparametric mixture models [6, 2]

► Supervised classification in image analysis [7]
- Seismic onset detection [8]

URL classification [1]

► Visualizing clustering and uncertainty results for time-dependent data [3]
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Simulation Two Results

Generate simulated datasets : 2 x 200 and X2 : 2 x 200:

1. Let C define two clusters, where Cr, = 1 for n {1, ..., 100} and
Cn = 2 for n E {101, ..., 200}.

2. Draw a from a Uniform(0.5,1) distribution. Let al = cv2
The true a = 0.8595756.

For m = 1, 2 and n = 1, ..., 200, generate Lmr, {1, 2} with
probabilities P(Lmn = Cn) = a and P(Lmn / Cn) = 1 — a.

4. For m = 1, 2, draw values Xmn from a N2([1.5, 1.5]', /2)
distribution if Lmn = 1 and from a N2([ 1.5, 1.5]', /2)
distribution if Lmn = 2.

a

Analysis Details:

Run BCC to obtain overall and source-specific clsuterings of two
clusters each. (K = 2)

• 10,000 MCMC iterations using the R package bayesCC

Point estimates of clustering probabilities: MAP estimates

Simulated Data and Clusterings:
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Future Uncertainty Quantification Research
Directions

- Tying in cluster separability measures to uncertainty measures

UQ and creating robust ground-truth evaluation benchmarks

► Extension from pixel-level to image-level UQ (uncertainty of cluster
boundarries)

Semi-supervised probabilistic clustering and uncertainty quantification

Sources of uncertainty and uncertainty propagation

inverse unceitainty quantification problem
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Philadelphia lmagery Data Results

Optical (RBG Values) Lidar (Height of Objects)

Analysis Details:

Each image contains 10,000 pixels (100 x 100). (N = 10, 000)

Run BCC to obtain overall and image specific clusterings, each with six clusters.
(K = 6)

1,000 MCMC iterations using the R package bayesCC

Point estimates of clustering probabilities: MAP estimates
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Conclusion:

Lidar image has more influence on the overall clustering.

► Can we conclude that the lidar image is more valuable than the optical image?

References

Toward uncertainty quantification for supervised classification, author Darling, Michael C. and Stracuzzi, David J. , year 2018, institution Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States).
Technical report.

Maximillian G. Chen, Michael C. Darling, and David J. Stracuzzi.
Multimodal image analysis and uncertainty quantification via nonparmaetric probabilistic clustering.
yoster presented at the Lonterence on uata Anaiysis, March 2018.

3 Maximillian G. Chen, Kristin M. Divis, J. Dan Morrow, and Laura A. McNamara.
Visualizing clustering and uncertainty analysis of multivariate time-series data.
Submitted to Statistical Analysis and Data !Mining: i ne A3A Ea Science Journal, June 2018.

Eric F. Lock and David B. Dunson.
Bayesian consensus clustering.
Bioinformatics, 29(20):2610-2616, 2013.

n Eric F. Lock and David B. Dunson.
Supplement to ,, bayesian consensus clustering".
Bioinformatics, 201,

David J. Stracuzzi, Maximillian G. Chen, Michael C. Darling, Matthew G. Peterson, and Charles Vollmer.
Uncertainty quantification for machine learning.
Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States), 2017.

D David J Stracuzzi, Michael C Darling, Maximillian G Chen, and Matthew G Peterson.
Data-driven uncertainty quantification for multi-sensor analytics.
In SHE Defense Securlly, uruund/Air Muirisensor Interoperability, Integration, and Networking for Persistent ISR IX, 10635. Orlando, FL. SPIE. Also available as
Sandia Report 2018-3541C., 2018.

Charlie Vollmer, Matthew Peterson, David J. Stracuzzi, and Maximillian G. Chen.
Using data-driven uncertainty quantification to support decision making.

Statistical Data Science Workshop, 2017.

SAND2018 Contact: mgchen@sandia.gov

.1•11
_NNW AC- .

-Da--KI la P..1a1-.1ccia I 1...abo raliorlea Is a -riJr.1-n1*-slo-i laxira-Kiry managed 7-11:1 opera-)21:1 ay ?....411anal Tecrrlolcmw Erral-paerIng of Sa-dla. a yriolly
oye-pad *-.F3sIdlary of ricriermell kellema-.1oial Inc -Or erie DeFrar:rne--r. of Energy's NM-II:L-1a! P.A.P1lear See-Jrri AcrnIllsr.m-.Ion unde r co-r.m- DE- Ni.o.IXE33: 5 .

SAND2018-9654C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.


