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Motivation

Electron Spin Qubit Coherence Times T, — spin T,” - spin
coherence  dephasing
dopant-free, isotopically-purified Si?8 28 ms’ 120 us
modulation-doped GaAs 0.9 ms’ 80 ns
1 using CPMG pulses

But what about DiVincenzo Criteria 6 and 77

6. Interconvert stationary and flying qubits
7. Transmit flying qubits between distant locations



Potential Advantages of Holes in Lateral GaAs QDs

Direct Bandgap
No Valley Complications

Weaker hyperfine decoherence

J.Fischer et al. PRB78 155329 (2008)
R.Fallahi et al. PRL 105,257402 (2010)

Tunable g-factor (a) measure of LH-HH mixing
(b) Zero g-factor required for (3 to ‘@ transfer schemes

Gaudreau et al., Semicond. Sci. Techn. (2017)

Fast spin-orbit rotations



Sandia P- Double Quantum Dot Device

Sandia

L. A. Tracy, etal. "Few-holedouble quantumdotin an undoped
GaAs/AlGaAs heterostructure,"APL, v. 104, 123101 (2014).

SANDIA REPORT SAND2015-8132 (October 2015)

Al <« global
accumulation gate
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One and Two Hole regimes in a Magnetic Field

Bogan et al. PRL (2017)
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G-factor vs Tilt

OBl Experiment Self-assembled dot [Belykh et al.]
—— Theory A Si Nanowire [Voisin et al.]
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Bogan et al., Phys. Rev. Lett. (2017)



Tunnel Matrix Elements
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Enhanced Readout/Measurement via Latching

Spin Qubit Readout \ T1 - Measurement
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T1 Protocol taking advantage of spin-flip tunneling

S.Studenikin et al. submitted

— 1= 0o

Inject Random Spin and Wait Interact Empty left Dot



Single Shot Readout
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B Dependence of T1 (Phonon assisted S-0)
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Landau-Zener-Stuckelberg Inteferometry
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Detuning (peV)
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LZS oscillations of a single-hole charge qubit at B=0
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Detuning (ueV)

Detuning (neV)

Detuning (ueV)

Single-hole hybrid spin-charge qubit at B>0
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Magnetic field dependence of LZS
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Spin-not gate
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Interference loops
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Multiple photon-assisted tunneling pattern
- possibility of novel guantum interference phenomena
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2 Hole LZS
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LZS oscillations probing two-spin qubit at different magnetic fields
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Coherent LZS funnels for electron and hole singlet-triple systems

() electrons
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Conclusions

Spin-flip and non spin-flip tunneling similar order of magnitude due to strong S-O

Strong g-factor dependence on tilt - g~0 for in plane field

Single shot spin relaxation of single holes measured using latching technique
- B dependence consistent with Phonon mediated Dresselhaus S-O

LZS interferometry for single hole provide opportunities for novel functionalities
due to spin-flip tunneling and spin-flip photo-assisted tunneling

LZS between S and T_ for two holes observed involving S-O (not hyperfine) coupling
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