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Motivation

Electron Spin Qubit Coherence Times T2 - spin T2* - spin
coherence dephasing

dopant-free, isotopically-purified Si28

modulation-doped GaAs

28 mst 120 us

0.9 mst 80 ns—i

f using CPMG pulses

But what about DiVincenzo Criteria 6 and 7?

6. lnterconvert stationary and flying qubits
7. Transmit flying qubits between distant locations
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Potential Advantages of Holes in Lateral GaAs QDs

Direct Bandgap

No Valley Complications

Weaker hyperfine decoherence
J.Fischer et al. PRB78 155329 (2008)
R.Fallahi et al. PRL 105,257402 (2010)

Tunable g-factor (a) measure of LH-HH mixing
(b) Zero g-factor required for to 4 transfer schemes

Gaudreau et al., Semicond. Sci. Techn. (2017)

Fast spin-orbit rotations
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Sandia P- Double Quantum Dot Device

rL. A. Tracy, et al. "Few-hole double quantum dot in an undoped
GaAs/AlGaAs heterostructure."APL. v. 104. 123101 (2014).

SANDIA REPORT SAND2015-8132 (October 2015)
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One and Two Hole regimes in a Magnetic Field
Bogan et al. PRL (2017)
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G-factor vs Tilt
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Bogan et al., Phys. Rev. Lett. (2017)
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Tunnel Matrix Elements
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Enhanced Readout/Measurement via Latching

Spin Qubit Readout

-00- —0— (2,1)
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\IL < Ti,Tm
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TR
— (2,0)

Studenikin et al., Appl. Phys. Lett. 101, 233101 (2012).

T1 - Measurement

J.M.Elzerman et al. Nature (2004)
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T1 Protocol taking advantage of spin-flip tunneling

S.Studenikin et al. submitted
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Single Shot Readout
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B Dependence of T1 (Phonon assisted S-0)
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Landau-Zener-Stuckelberg Inteferometry
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t(n) = t J

For electrons:
Oosterkamp et al., Nature 395, 873; Schreiber et al., Nature Comm. 2, 556,
Gonzalez-Zalba et al., Nano Lett. 16, 1614; Stehlik et al., PRB 86, 121303;
Forster et al., PRL 112, 116803
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LZS oscillations of a single-hole charge qubit at B=0
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Single-hole hybrid spin-charge qubit at B>0
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Magnetic field dependence of LZS
MC-CMC

Zero magnetic field

f=19.56 GHz

i440411/4̀

4"1110101010

I I 41101010411/0i

11 "1"0"0114PNPI*

• OM "19

Log MW amplitude

Pattern splits into
spin-conserving and spin-flipping PAT

-1.0 -0.5 0.0 0.5 1.0

Magnetic field (T)
1.5



Spin-not gate

400-

-1.5 -1.0 -6.5 0.0 0.5
(T)

Two spin-flip transitions:
n=0 order:

fisLn=1 order:

4/, ->fl‘R

1.0

Possibility of the complete NOT gate

a L) <--> a

1:5

Alignment 1



Interference loops
MC -

400-

-1.5 -1.0 -6.5 0.0 0.5
(T)

1:0 1:5

Multiple photon-assisted tunneling pattern
- possibility of novel quantum interference phenomena

Alignment 2



1
PaC

-0.10

B 20 mT

-0.05 0.00

Detuning (mV)

0 05

T+(1 ,1

T (1 1 )

0.10

(a) S(11)

E
ER t

Position x

yi -fine

(c) S(20)

E

Posta x



LZS oscillations probing two-spin qubit at different magnetic fields
MC - CARC
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Coherent LZS funnels for electron and hole singlet-triple systems
MC-ChW
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Conclusions

Spin-flip and non spin-flip tunneling similar order of magnitude due to strong S-0

Strong g-factor dependence on tilt - g-0 for in plane field

Single shot spin relaxation of single holes measured using latching technique
- B dependence consistent with Phonon mediated Dresselhaus S-0

LZS interferometry for single hole provide opportunities for novel functionalities
due to spin-flip tunneling and spin-flip photo-assisted tunneling

LZS between S and T for two holes observed involving S-0 (not hyperfine) coupling
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Council Canada recherches Canada Canada 21


