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Poisson’s Ratio Induced Radial
Inertia During Dynamic Compression
of Hyperelastic Foams
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‘ Silicone Foam Background

* Shock Vibration Isolation and Reduction
* Light weight
* Excellent energy absorption
* Full recovery after impact loading

Open-Cell Silicone foam
Density: 608 + 21.85 kg/m?
Average cell size: ~0.5 mm

Porosity:~50%
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At first glance, it may seem OK to neglect Poisson’s Ratio or assume a small number
near zero due to apparent compressibility



‘ Silicone Foam

* Mechanical response of silicone foam may be altered by...

e Strain rate ,

* Stress-state
* Temperature FO8)
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Shock or vibration isolation pads can undergo
° High strain rate
° High densification state

Past densification, material may lose compressibility



.1 Poisson’s Ratio

* Poisson’s Ratio is typically regarded as a material constant

Good for metals in Elasticity

e_ Small strains

Materials such as foams are undergo large deformation

True strains along axial and radial

InA &

% 4 directions
InA g . .
x x Secant Poisson’s Ratio

Applicable to Linear Response Only J

In the case of nonlinear large deformation, tangent Poisson’s ratio with true
strains represents actual Poisson’s ratio




.| Literature

* Most available studies on Poisson’s ratio...

Response might not apply to
high strain rates
Material can undergo large
deformation during use

Tangent method must be used
for accurate results
/

Our Approach: Measure Poisson’s ratio at high rate*, large deformation, and
calculate using tangent ratio for best results

< *quasi-static also included as a check




‘ Quasi-static experimental setup and
calibration
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‘ Poisson’s Ratio Calculation

True Radial Strain
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* Tangent Poisson’s Ratio for large, nonlinear deformation

—In(1—e) True strain: Axial compression (+) and Radial Tension (-)
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‘ QS and High Rate Poisson’s Ratio B
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.| Radial Inertia during Dynamic Compressive [ [
Loading

* Change in Poisson’s Ratio affects the measured response of the material due to Radial Inertia

Dharan and Hauser (1970): In a compression test with constant axial velocity:

*At a specific location, particle velocity along lateral (radial) direction increases with
time (or increasing strain/decreasing specimen thickness)

*At a specific time, particle at outer diameter moves faster along lateral (radial)
direction than the particle at inner diameter

Result: Radial Confinement



‘ Conseqguence of Radial Inertia

* Abnormal axial stress history May overshadow material response (soft

4,000

materials)

Abnormal spike in
stress history due
to radial inertia
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Fig. 1 The abnormal initial spike-like features in the stress histores

of a gelatin specimen

0.8

The bump is stress measured in axial direction due to
radial-inertia-induced confinement in the sample

Could be incorrectly attributed to material response

Song, B., Chen, W.W., Ge, Y., Weerasooriya, T., (2007) Radial inertia effects in Kolsky bar testing of extra-soft
materials. Experimental Mechanics, 47:659-670.



‘ Currently Existing Analysis

» Kolsky (1949) % Dharan and Hauser (1970)
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» Forrestal et al. (2007)
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Factors that affect radial inertia stress

» Warren and Forrestal (2010)
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‘ Comprehensive Radial Inertia Analysis

* Re-deriving the previous analysis using mass and momentum conservation

Mass: Momentum :
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‘ Radial Inertia in Silicone Foam

Extra Stress
Including Poisson’s
Ratio Change Using

Boltzmann Fit
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Inertia stress induced by Poisson’s ratio change is dominated during onset of densification (large
strains)

Effect is worse at higher strain rates: almost no spike seen at 2000 s, larger spike at 4000 s (é,% (1))
This method can be used to correct inertia-induced stress spike seen in foam data

New radial inertia analysis is comprehensive especially accounting for Poisson’s ratio change



_1 Conclusions

* Optical methods were used to measure deformation of silicone foam
* Radial-axial strains were collected and fit using a Boltzmann sigmoid function
* Tangent method to calculate Poisson’s ratio for large strain, nonlinear deformation

* Overall, foam transitioned from being compressible to nearly incompressible with
densification

* Unique Poisson’s ratio behavior resulted in radial inertia during tests
* Comprehensive radial inertia analysis for SHPB experiment

. _Specimein strain (large strains) and Poisson’s ratio change contributed to radial inertia
in sample

* Numerical correction of stress-strain curve is possible but must be refined



.1 Questions



‘ Radial Laser Calibration
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