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2 Silicone Foam Background

• Shock Vibration Isolation and Reduction
• Light weight

• Excellent energy absorption

• Full recovery after impact loading
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Open-Cell Silicone foam

Density: 608 ± 21.85 kg/m3

Average cell size: —0.5 mm

Porosity:-50%

At first glance, it may seem OK to neglect Poisson's Ratio or assume a small number
near zero due to apparent compressibility



3 I Silicone Foam

• Mechanical response of silicone foam may be altered by...
• Strain rate

• Stress-state

• Temperature
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Shock or vibration isolation pads can undergo
• High strain rate
• High densification state
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Past densification, material may lose compressibility



4 I Poisson's Ratio

• Poisson's Ratio is typically regarded as a material constant

V = -
er

;

Materials such as foams are undergo large deformation
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Good for metals in Elasticity

S mall strains

True strains along axial and radial
directions

Secant Poisson's Ratio

Applicable to Linear Response Only

In the case of nonlinear large deformation, tangent Poisson's ratio with true
strains represents actual Poisson's ratio
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51 Literature

• Most available studies on Poisson's ratio...

Conducted at quasi-static
strain rates

m

Limited to small
deformations

2

Some measure large
deformation, use secant

ratio to calculate
i

I

r

r --
Response might not apply to

high strain rates

M

Material can undergo large
deformation during use

i M

Tangent method must be used
for accurate results

Our Approach: Measure Poisson's ratio at high rate*, large deformation, and
calculate using tangent ratio for best results

*quasi-static also included as a check



61 Quasi-static experimental setup and
calibration
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7 High Rate Experiments
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1 High Rate
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9 I Poisson's Ratio Calculation
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• Tangent Poisson's Ratio for large, nonlinear deformation
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.1 QS and High Rate Poisson's Ratio
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11 1 Radial Inertia during Dynamic Compressive
Loading

• Change in Poisson's Ratio affects the measured response of the material due to Radial Inertia

Dharan and Hauser (1970): In a compression test with constant axial velocity:

At a specific location, particle velocity along lateral (radial) direction increases with
time (or increasing strain/decreasing specimen thickness)

At a specific time, particle at outer diameter moves faster along lateral (radial)
direction than the particle at inner diameter

2a,

vo 2l v(t)
Result: Radial Confinement



.1 Consequence of Radial Inertia

• Abnormal axial stress history

Abnormal spike in
stress history due
to radial inertia

May overshadow material response (soft
materials)

0 3 OA 01.5 0.6 0.7 OB

Tip= OA

Fig. I The abnormal initial spike-like features in the stress histoiies
of a gelatin specimen

The bump is stress measured in axial direction due to
radial-inertia-induced confinement in the sample

Could be incorrectly attributed to material response

Song, B., Chen, W.W, Ge, Y, Weerasooriya, T., (2007) Radial inertia effects in Kolsky bar testing of extra-soft
inaterials. Experimental Mechanics, 47:659-670.
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13 Currently Existing Analysis

lir• Compressible Solid
• Small deformation

• Incompressible Solid
• Large deformation

➢ Kolsky (1949) • Dharan and Hauser (1970)
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Factors that affect radial inertia stress

Specimen Geometry:

Specimen Diameter
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Loading Conditions:

Impact Velocity

Strain Rate
Strain
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Specimen Properties:

Density

Poisson's Ratio



„I Comprehensive Radial Inertia Analysis

• Re-deriving the previous analysis using mass and momentum conservation

Mass:
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„I Radial Inertia in Silicone Foam
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161 Experimental Verification and Conclusion
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Inertia stress induced by Poisson's ratio change is dominated during onset of densification (large
strains)

Effect is worse at higher strain rates: almost no spike seen at 2000 s-1, larger spike at 4000 s-1 (6x2(t))

This method can be used to correct inertia-induced stress spike seen in foam data

New radial inertia analysis is comprehensive especially accounting for Poisson's ratio change



171 Conclusions

• Optical methods were used to measure deformation of silicone foam

• Radial-axial strains were collected and fit using a Boltzmann sigmoid function

• Tangent method to calculate Poisson's ratio for large strain, nonlinear deformation

• Overall, foam transitioned from being compressible to nearly incompressible with
densification

• Unique Poisson's ratio behavior resulted in radial inertia during tests

• Comprehensive radial inertia analysis for SHPB experiment

• Specimen strain (large strains) and Poisson's ratio change contributed to radial inertia
in sample

• Numerical correction of stress-strain curve is possible but must be refined



18 1 Questions



„I Radial Laser Calibration
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