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Executive Summary:

In its current state, the distribution system is incapable of handling small to moderate
amounts of photovoltaic (PV) penetration. This is because it was initially designed for
handling passive loads which, at the level of a substation, have low variability and are
forecastable with high accuracy. It has been an open loop system with little monitoring
and control. With the addition of PV energy sources, the overall scenario will change
dramatically due to (1) two way power flow on network; and (2) high aggregate variability.
Additionally, changes on the consumption side lead to a number of smart loads, Electric
Vehicles (EVs), and Demand Response.

These fundamental changes in the characteristics of the generation and consumption of
power will lead to a number of practical engineering problems which must be overcome
to allow increased penetration of Distributed PV. Solving the unique engineering
challenges which arise at moderate levels of PV penetration requires closed loop
integration of data from (1) PV sources; (2) customer load data from smart meters; (3) EV
charging data; and (4) local and line mounted precision instruments.

These data are not traditionally used by utilities in operations since they are "non-SCADA’”
and the current grid does not require such levels of control. To integrate this data and
provide real time intelligence from these non-SCADA data, we created the Visualization
and Analytics of Distribution Systems with Deep Penetration of Distributed Energy
Resources (VADER) platform. VADER is a collection of analytics enabled by integration
of massive and heterogeneous data streams for granular real-time monitoring,
visualization and control of Distributed Energy Resources (DER) in distribution networks.
VADER analytics enable utilities to have greater visibility into distributed energy
resources. We built several batch- and stream-analytics in VADER which help operators
better understand the impact of distributed energy resources on the grid.
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Background:

With increasing penetration of DERs and other grid-edge devices, modeling of the
distribution grid is becoming a crucial aspect of grid planning and operations. Grids with
high penetration of DERs experience issues with voltage violations, stability, and
congestion, and often respond with curtailment of these resources.! Utilities need more
sophisticated modeling tools for their distribution grids to better forecast and control grid-
edge resources and avoid curtailment. Other work has designed methods for these
controls, notably for using solar inverters to implement volt-var control,?® but these
approaches must adopt either simple control laws or very complex agent-based methods
to work around the missing grid model.

While utility grid models are often out of date or non-existent at the edge of the grid, more
and more utilities are installing advanced metering devices in the distribution grid to
capture data on power and voltage levels. The projects in VADER leverage these new
streams of data, applying state-of-the-art data analysis and machine learning techniques
to build flexible, new, data-informed models.

One main focus of the project is on grid topology and parameter estimation, as discussed
further in the Results section of this report. Several studies have addressed this problem
but few explicitly account for the impact of measurement errors*-°, which are often very
significant in distribution grid devices. One study which did consider measurement errors
took a similar approach of minimizing total least squares, but only used a linear model of
the power flow and did not build the statistical model of the method.® The work in this
project aimed to fill that gap.

Project Objectives:

The major research effort in the VADER project focused on developing high resolution
temporal models for EV, PV and loads which are data driven and can be integrated into
the VADER system. The integrated data gives researchers an unprecedented opportunity
to develop more accurate state estimation techniques. Integration of the new data-driven
models of load and distributed energy resources enhances the capability and accuracy
of power flow solver for analyzing sensitivities of various key system variables (e.g.
distribution feeder bus voltages) with respect to different DER (in particular, PV)
penetration levels.

In summary, the VADER project objectives were to:
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1. Build a set of tools, using data science techniques such as machine learning, to
integrate and model a large number of disparate sensor sources to enable
distribution system planning and control;

2. Verify the tools utilizing data from industry and utility partners; and

3. Validate the platform in a pilot testbed combining hardware-in-the-loop simulations
and real-time data from deployed hardware in the field.

The project was completed over the course of three years. The first year of the project
was spent in defining specific problems of value to industry stakeholders, integrating initial
datasets, and developing software for streaming data integration. By specifying the
problems of interest, we defined the algorithms that needed implementation and test
criteria for the VADER system. In the second year we began the joint tasks of VADER
platform development effort as well as Distribution System Tomography and What Now
Analytics development. Finally, while the first two years dealt with data collection, virtual-
SCADA generation, development and testing of VADER platform and DS Tomography
pieces, the third and final year of the project contained tasks for integration of the
developed analytics with modeling tools and visualization software. Additionally, there
was a focus on the algorithm development and testing for What If and Network Analytics.
The goal of the DS SEER work was to provide all “what if’” functionality using historical
data and commercial power flow software with a scenario generation module providing a
standard set of planning exercises which can be mapped to changes in topology, sensing,
loads, device behavior, etc. The output goal was a modified power flow problem with
data-driven solutions providing new insights and filling in various real-world modeling

gaps.

Planning and operations of a reliable, stable and efficient distribution system with high PV
penetration (>100% of peak load) requires adequate monitoring and accurate prediction
capability that allows scenario analysis and closed-loop control of the distribution system.
Furthermore, a unified data analytics platform that integrates massive and heterogeneous
data streams for planning and granular real-time monitoring with analytics, visualization
and control of distributed energy resources is required for modern energy management
systems.

The main innovations of the project include: ingesting, combining, and using multiple data
streams of different data types together for grid analytics; developing a sophisticated
platform to manage real-time data and computations; designing a set of data-driven
algorithms to provide “what now” and “what if” analytics on grid operations; and publishing
a large number of research papers on how innovative techniques from data science can
be applied to these crucial problems for the grid.
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Virtual SCADA: The data cleaning methodology, called the Virtual SCADA system, is
illustrated in the following figure.

STREAM 1 —|—
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Statistical
|
STREAM 3 7 Estimate
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SCADA CLOCK e et EEEE

The methodology is based on the idea that data-derived relationships in data streams can
be used to fill in holes, both within a single stream and between different streams. Many
of the “what now” analytics address this: for example, topology estimation uses metered
data to recreate grid parameters, and machine learning based power flow can be used to
fill in holes in voltage measurements from power measurements or vice versa.

Data Plug: The “Data Plug” was designed as a tool to interface with partner database
APIs to stream data and apply advanced data management and validation tools to
process the data received.

DS tomography module: This was designed to integrate disparate, unreliable data into
“virtual SCADA” data streams for power system analysis, as described above.

“What now” Analytics: A crucial component to understanding today’s grid, these analytics
include advanced state estimation, topology estimation, outage detection, switch
configuration detection, data-driven power flow models, quantification of EV flexibility, and
disaggregation to study distributed PV generation. These all provide situational
awareness based on the wide range of data inputs.

“What if” Analytics: The “what now” tools applied to analyze different scenarios of PV
integration for planning, time-space analysis, and location benefits define the “what if’
analytics.

Platform: To integrate all these components together a data pipeline was designed. The
original high-level design is depicted in the figure below. After conducting user workshops,
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interviews, and Technical Advisory Group meetings, the data pipeline design was
modified to support extensibility and ease of development. These modifications and
changes are discussed in more detail in the following section.

mPMU/Line

Data Plug

Virtual

Historical SCADA

Data

What If
Power Systems

Analytics What Now

The project was organized into 7 tasks summarized below:

Task 1. Project Management: This was not a technical task but an important one for the
success of the project. The project required heavy coordination with industry and all the
research partners. It required that all the milestones were met on time and that the
deliverables were high quality and on time. This task focused on project coordination and
communication ensuring the team was available and responsive to funder’s needs as well
as being well coordinated with the evolving needs of the industry.

Task 2. Strategic Planning: While there is a growing number of systems (Advanced
Distributed System Management, Demand Response Management Systems, GIS, etc.)
with increasing capabilities, there currently is no software platform for integrating the
ubiquitous but non-SCADA measurements that are and will be on the distribution system.
Therefore, building the set of functional requirements for system operators and data
providers and developing the key algorithms was crucial in developing the VADER
system. The team and the technical advisors were able to evaluate the state-of-the art
systems and decide on the key capabilities and analytics which would be useful for the
industry to increase PV adoption.

Task 3 Data Collection and Integration: This task defines all data generation, collection,
processing, and validation and spanned the three years of the project. To begin
development of the VADER system, test data and APIs were collected from partners. This
data was used in the initial development and testing of the methods which comprise the
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VADER platform. The Data Plug module would handle access and entry of data from the
various partners involved in the project. The real-time API access to partner systems
would be custom for every data integration partner. The generation of database tables
was to be input into the database system and passed through the data validation and
initial processing step. Streaming access to the data was required to be developed and
tested. The Virtual SCADA module provided the initial validation and alignment of the
data. The goal of this module would be to create multiple sets of data that are time aligned
with missing values imputed using purely statistical methods. The streams would be
outputted to visualization dashboards.

Moving into year two, there was continued effort to define all data generation, collection,
processing, and validation. While most of the work was to be competed in year 1, the task
left open the possibility of iterations as needed as the project progresses if we found
different, more innovative ways of solving the same problems or expanding the scope of
problems due to TAG patrticipation and feedback.

Finally, in year three, the task work was to refine, and complete validation of Data Plug
with existing (or potentially growing) data sets.

Task 4 VADER Big Data: In this task, we designed and developed the core big data
system for VADER. The data engine was to consist of the Virtual SCADA and Database
component. The activities included finalizing the system architecture (Figure 1), database
selection, and implementation. Reference Architecture for Amazon Web Services-based
public cloud implementation is included in Project Results and Discussion section of this
document. In year two, this task focused on the design and implementation of VADER’s
dashboard metrics, alarms and visualization. Finally in year three, work would focus on
architecting and developing the core big data system for VADER, we were to integrate
VADER with a power system modeling and simulation tool (GridLAB-D), and integrate it
with an open-source visualization tool. This would allow us to explore using data for model
validation and calibration as well as evaluate the connectivity with a commercially
available visualization tool.
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Figure 1. Schematic of the reference architecture for the VADER Data Platform built in
AWS Public Cloud

Task 5. DS Tomography: What Now Analytics: In this task, our aim was to research
representative traditional state estimation software; design data inputs and design of
workflow, and research machine learning capabilities for state estimation for AMI data,
PV data model (inverters, etc.), yPMUs, EV data (flexibility). In year two of this task, we
would select representative traditional state estimation software; identified data inputs
and design of workflow; prepared and connected the Virtual SCADA with traditional state
estimation software, developed machine learning capabilities for state estimation for AMI
data, PV data model (inverters, etc.), uPMUs, EV data (flexibility). Finally in year 3 our
goal was to test our development efforts using traditional state estimation software using
the data sets we to which we had access.

Task 6. DS Seer: This task, which was scheduled to begin in year two, was focused on
selecting representative traditional power flow software; identifying data inputs and
designing workflow; preparing and connecting the Virtual SCADA with power flow
software, and developing machine learning capabilities for power flow for AMI data, PV
data model (inverters, etc.), uPMUs, EV data (flexibility). Finally in year three, we aimed
to expand the capabilities developed in year two to include additional data streams and
use the selected representative traditional power flow software; identify data inputs and
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design of workflow; develop machine learning capabilities for power flow for AMI data, PV
data model (inverters, etc.), metering dataEV data (flexibility).

Task 7. Network Analytics: This task was to start in year two and leverage much of the
previous task’s work. Here we aimed to research and develop the topology identification
algorithm based on Bayesian algorithms, sensor placement algorithm based on DS Seer
models, outage detection algorithm based on Bayesian algorithms, state estimator for
sub components of system and test the algorithms with datasets in the project for various
scenarios. In year three, most of the effort would focus on wrapping up all the tasks started
in previous years and completing this task.

Final Phase Milestone Deliverables:

VADER made significant contributions to reducing interconnection study time and
increasing PV penetration. While achieving these two significant goals, the project also
contributed to the use of data in DMS solutions. VADER team:

1. Published in peer-reviewed journals all the ML algorithms developed for modeling
SE and all the other analytics and share the results of the analytics in peer-
reviewed journals.

2. Published mature VADER analytics as an open source library of software tools.
The code will be object-oriented, modular, and well documented.

3. Containerized and published VADER analytics as an open source reference model
(including its architecture and modules) of how to deploy and use individual
analytics modules and integrate with proprietary datasets using standard schema
defined for each analytic module.

4. Reported on decisions made and implementations of data processing techniques,
databases and streaming

5. The entire IP developed through this effort is open source, mature code posted on
GitHub, and is available to the industry and vendor community.

6. Published workshop results: create an online video/webinar on how to install and
use VADER Analytics including demo of individual analytics and associated
documentation.

Project Results and Discussion:
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The outcomes of the VADER project include the development of several analytics and
also the data platform. In the following sections we describe the major results of these
accomplishments.

Solar Disaggregation:

Disaggregation of behind the meter (BTM) solar power generation from net load
measurements is quickly becoming a critical issue for grid operators. For BTM systems
the power system operator (PSO) does not have access to the solar generation directly,
but can only measure the net between the electrical load and PV output. At the end of
June 2018 the number of non-utility BTM rooftop solar installations reached 6,200 MW in
the Californian 1SO’s balancing area, with over 2,500 MW installed since 2016.°
Fundamental operations such as switching, state-estimation, voltage management, and
black start procedures need this information in order to be performed reliably and
effectively, as evidenced by the inclusion of this topic area in the most recent Grid
Modernization Lab Consortium funding opportunity announcement.

Data-driven approaches to estimating BTM solar generation is currently being researched
by the Grid Integration Group at Lawrence Berkeley National Laboratory,!! the Sensing
and Predictive Analytics Group at National Renewable Energy Laboratory (led by Y.C.
Zhang), and Viktor K. Prasanna’s group at the University of Southern California.*? All
teams show certain similarities in their approaches:

e Unsupervised rather than supervised statistical learning methods
e A convex optimization formulation that is related to the concept of conceptually
supervised source separation (CSSS)?*3

The different teams have all tackled different specific use cases and approaches
including:

e AMlI-level versus aggregate measurements
e EXx post versus real time analysis

The work on solar disaggregation supports Task 5: “DS Tomography — What Now
Analytics”. Building on the theoretical work presented in,*3 the VADER team formulated
a domain-specific application of CSSS for disaggregating solar production from house-
level AMI data, and validated the work on data proved by Riverside Public Utility.'# In this
work, we extended Wytock and Kolter’s original analysis to show that, for the special case
L-2 norm objective functions used here, the optimal solution for model coefficients are the

Page 10 of 25



Agreement number 31003
VADER
SLAC National Accelerator Laboratory

same as those found by a linear estimator, regardless of how each model’s prediction
errors are weighted in the objective function. We then proposed to estimate optimal
weights for the problem objective function by comparing the variance of the linear model’s
predictions during daytime hours versus nighttime hours. The variance of the aggregate
model’s errors during nighttime hours reflects only load predictions, while the variance
during daytime hours contains errors from both the PV and load predictions. Assuming
the errors from each model are independent, we use this information to estimate
variances for prediction errors from the load and PV models separately.

The VADER team further extended this work to include the use case of real-time
disaggregation of solar production from streaming data, while doing further validation on
the ex post use case.'® The historical problem relies on data from advanced metering
infrastructure (AMI), and data from a proxy signal that is contemporaneously related to
solar generation behind the meters. We used generation from one or more nearby PV
systems as solar proxies. On a set load and generation data from 52 homes within the
Pecan Street dataset, we find the historical method is able to accurately predict which
homes have solar in over 90% of cases. The historical problem is able to recover the 15-
min resolution PV generation signals with root mean square errors between 20% and
50% of average daily PV generation. An example of these results are shown below in Fig.
1. A sensitivity analysis shows the method to be robust to the number of buildings and
time span of data used to fit. However, including more than three solar proxies can cause
false positive solar generation due to overfitting of solar proxies to unrelated noise in
consumption data. Also, the method works better in homes which export electricity to the
grid more often. We show that once the historical problem is fit to a set of homes, it can
be applied in real time relying only on aggregate net load data from a substation, instead
of net load measurements from individual buildings’ AMI. We find the streaming problem
performs with the same accuracy as the historical data problem on simplified test data
explicitly constructed to model this problem, but we were unable to test the methods on
real SCADA data from a distribution system operator.
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Figure 2: Descriptive results from model fitting. (Top row) Performance of the model
before and after tuning alpha for (left) a home with solar, where points along the y=x are
preferred because they indicate that the results of disaggregation match actual solar
production; (center) a home without solar, where a lower RMSE is preferred; (right)
aggregate load where, again, points along the y=x line are preferred. (Bottom row) Trace
plots of disaggregated and actual signals for one day.

The work on solar disaggregation was further extended by a visiting master’s student from
Denmark Technical University, who deeply investigated sources of error in the previously
proposed approach, methods for improving accuracy, and the best procedures
implementing the proposed approach.® Important results from this research include:

e The tuning alpha routine showed to successfully remove nighttime generation
which was assigned to some solar houses and significantly improve the
performance of the algorithm at non solar houses.

e The estimated SNR (solar to noise ratio) proved to be an accurate proxy to
estimate the quality of the signal separation after having performed it. Sites with
lower SNR experienced a higher error. Intuitively, it is harder to extract the true
solar signal when its energy is lower than that of the load.

e Fifteen minute data resolution proved to convey the same performance as the
hourly set at houses with solar, while it outperformed the latter at houses without
solar.

Page 12 of 25



Agreement number 31003
VADER
SLAC National Accelerator Laboratory

e The model proved to perform much better at the feeder level than at individual
customers, as expected. The average CV dropped from 37 % at the individual level
to 21.7 % at the feeder level.

Finally, the team developed open-source Python software, implementing the solar
disaggregation algorithm, which is available in the project-level GitHub repository.

Machine Learning Based Power Flow:

Rather than trying to fill in the missing pieces of a traditional power flow model for the
grid, we replaced the power flow equations with a purely data-driven set of models. The
method proposed was a kernel-based Support Vector Regression (SVR).” SVR is a
tunable regression method designed to be robust to outliers and overfitting. This was
chosen for its flexibility to different observability and noise levels in the data for different
networks. The kernel of the SVR model was quadratic to match the form of the physics-
based power flow equations, so training the SVR model was equivalent to estimating line
parameters. This connection to the physics based model helps insure against overfitting.

The results of the study were very positive. Power flow estimation error was very small,
and was shown to be robust to networks with limited observability, devices with unknown
droop control rules, outliers, and noisy data.’

Further work on this topic focused on the Inverse Power Flow Mapping, also called
voltage estimation. Simple mappings for voltage estimation are very useful in designing
voltage control laws, and research reported through this project demonstrated the
success of this idea for small networks. For the inverse mapping, simple linear regression
was found to match the performance of an SVR model. Other work in this area has
implemented more complex, neural network based models*® (Figures 3-5), but using a
simple approach was found to be more than sufficient for small low voltage grids. These
models are published in the VADER-Analytics Github along with sample notebooks
showing how they can be implemented for different network datasets.
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Figure 3. Mean squared error of power flow estimation on an 8 bus test system showing
the improvement of the SVR approach over a traditional regression method under

different measurement error levels.
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Figure 4. Mean squared error results for the same system showing the impact of having
unobservable controllers in the system.
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Figure 5. Results for the same system showing the robustness to outliers in the
measurement data.

Application of ML Based Power Flow to Virtual SCADA:
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Considering a dataset where a small percentage of entries have holes or missing
measurements, the power flow models described above can be learned on the complete
portion of the data and applied to the holes to fill in the data set. This application was
coded and found to perform very well, and code to implement this method is included in
the Github repository.

Topology Estimation:

To estimate grid parameters, one method developed in this project built a graphical model
to assign connections between nodes based on estimates of the probabilistic
relationships between voltage measurements.® A second study used Lasso regression
to make the method robust to meshed grid topologies, and found very positive results for
estimating grid topologies in standard IEEE test networks, including in the presence of
loops.?°

Parameter Estimation:
Building on the topology estimation work, two main studies were conducted on the
coupling of data-driven topology and parameter estimation.

The first study focused on a three-step method where parameter estimation feeds into
topology estimation which feeds into a second round of parameter estimation, “PaToPa”.
The regression was hardened to the impact of measurement error in variables by
implementing an error-in-variables model for the maximum likelihood estimation problem.
A low-rank approximation was used to make the problem tractable, and results were
found using smart meter data and the model of the real SCE feeder topology.?'??

The second study extended the “PaToPa” method to handle systems with multiple states
and state changes. State changes in historical data were treated as an unobserved latent
variable and an expectation-maximization algorithm was used to recover the hidden
states. This combined framework was called “PaToPaEM” and showed very strong
results on a range of IEEE test feeders.?® More detail on the real-time IEEE 123 bus
network feeder follows.

Real-time IEEE 123 bus network feeder implementation:

The IEEE 123 bus standard feeder network was implemented in the GridLAB-D modeling
environment and augmented with 344 typical residential houses customized to replace
the original constant current, power and impedance spot loads. In addition, the circuit
accommodates four voltage regulators, overhead and underground lines, shunt capacitor
banks, and a number of switching elements for controlling two-phase and three-phase
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internal and lateral feeder components. The model is able to run into two modes:
simulation and real-time. The real-time simulation mode has a front-end which has been
categorized into six components: home, control, weather, feeder, meter and map.

Home:
The Home page allows the user to set up the model to their unique use-case by defining
the server specifications, location-based information, load characteristics, data collection
methods (e.g., SCADA, AMI), and output location.

Control:
The Control page allows for simulation output customization options, where the user can
toggle options such as debug, warning, and other relevant messages.

Weather:
The Weather page displays the weather file information based on the input specified in
Home. The environment can handle TMY3 and CSV weather file formats.

Feeder:
The Feeder page displays the status of the electrical feeder and allows to specify
capacitor bank, internal switch and lateral switch configuration in real-time mode. The
implementation utilizes standard voltage control through end-of-line voltage
measurements.

Map:
The Map page displays the geo-coordinate mapping of the model onto Bakersfield, CA
grid network using Google Earth tools and KML files generated by the network.

Several uses and new features were developed based on the tool described above. The
real-time IEEE 123 model allows for validation of topology detection methodology and
direct line measurement object development using DS system topology tool in conjunction
with line flow measurements.?* Additionally, a new switch coordination controller for DMS
applications was developed using this platform.

Load Forecasting:

The work on load forecasting supports Task 6: “DS Seer—What If Analytics”. Recently,
massive amounts of detailed individual electricity consumption data has been collected
by newly deployed smart meters in households. A key technical challenge is to analyze
such data to better predict the electricity generation and demand. The VADER team
focused efforts in this area on developing methods for statistical forecasting of data
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collected from advanced metering infrastructure (AMI) or “smart meters.” Work in this
area focused on two fronts:

1. The forecasting of time-series load data that have hierarchical structure?
2. Developing a method for transfer learning for deep “long short term memory”
(LSTM) neural networks, trained for time-series forecasting?®

J\/WM\J\JWV\ 5701
VAV AT AT A U aWARTES
NWW 366

Time
Figure 6: One week of electricity demand for different levels of aggregation, with the
number of aggregated meters from the AECOM 2011 data set.

The first study showed that, by applying adjustments to the individual forecasts of a
hierarchical time series (see Fig. 6), itis possible to obtain revised forecasts which satisfy
hierarchical aggregation constraints. In existing approaches, the computation of these
adjustments involve a high-dimensional unpenalized regression and the estimation of a
high-dimensional covariance matrix. As a result, the existing forecasting methods can
suffer from extensively adjusted base forecasts with poor prediction accuracy. We
overcame this challenge by proposing a new forecasting algorithm that adds a sparsity
constraint to the adjustments, while still preserving the aggregation constraints. The
proposed method was validated on data collected during a smart metering trial conducted
across Great Britain by four energy supply companies (AECOM 2011). The data set
contains half-hourly measurements of electricity consumption gathered from over 14,000
households between January 2008 and September 2010, along with some geographic
and demographic data. The experimental setup focused on generating one-day ahead
hierarchal electricity demand forecasting at 30-minute intervals. The experiments
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performed using hierarchical electricity demand data showed the effectiveness of our
approach compared with the state-of-the art methods. In particular, the revised forecasts
have a high sparsity in the adjustments during night hours, and reduce to the “best linear
unbiased” revised forecasts during peak hours.

The second study builds on the well-researched area of transfer learning in the area of
image classification to the domain of time-series data. We introduced a new loss function
that aims to provide both regression loss, which is important for our forecasting objective,
and a reconstruction loss, which is important for generalization and transferability. We
have shown that our approach outperforms the baseline deep learning methods used for
forecasting. More specifically, we have shown a dramatic forecasting accuracy
improvement with transfer learning under small to medium training data size conditions,
as shown in figure 7.

Training Size vs. SMAPE
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Figure 7: Performance comparison of deep LSTM models between training with single
time series and training with transfer learning. The x-axis is the training size; the y-axis is
symmetric mean absolute percentage error (SMAPE). The red curve represents single
time series-trained model; the blue curve represents model using transfer learning. The
performance gap is huge for short training sizes. When training size increases, the
performance difference shrinks. Each round dot represents the mean SMAPE of all
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customers from B2, and the error bar illustrates the standard deviation of SMAPE over
58,000 customers.

Data Platform:

The VADER Data Platform is a cloud-based big-data analytics platform which enables
integration of massive and heterogeneous data streams for granular real-time monitoring,
visualization, and control of Distributed Energy Resources (DER) in distribution networks.
The cloud-based platform provides data- and app- hosting infrastructure. In addition to
hosting analytics and visualizations developed in-house by the team, VADER Data
Platform can be used to host 3rd party analytics and visualizations.
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Figure 8. Final architecture (system diagram) of the VADER platform.

Figure 8 above shows the final architecture of VADER’s underlying data management
pipeline. The pipeline is developed using a combination of open-source software and
managed services in Amazon Web Services cloud. Pipeline infrastructure supports both
batch and API-based data ingestion. Ingested data may be pre-processed or transformed.
Raw and/or pre-processed data is eventually persisted in one or more database formats
allowing the option for polyglot persistence. Web applications and Jupyter notebooks, can
serve as application-level interfaces with access to persistent storage and may be used
to perform queries, develop analytics, and render plots.
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This final architecture differs from the high-level diagram proposed early in the project.
During the first year of VADER, we established a Technical Advisory Group and hosted
user workshops, conducted 1:1 interviews, and group discussions to better understand
the needs of utility operators. One feedback we received repeatedly was about building
a flexible data pipeline that can support needs of smaller as well as large utilities. Building
such a system using on-premise computing infrastructure can be technically challenging
and cost-prohibitive. This was the motivation behind our biggest architecture-level change
-- to use cloud-based infrastructure as opposed to on-premise technology. Figure 1 shows
the reference architecture we developed for a cloud-based data platform. VADER
reference architecture can be used as a blueprint for developing a highly flexible,
scalable, and extensible data platform. Figure 8 shows the actual system diagram for
VADER data pipeline developed based upon the reference architecture laid out in Figure
1.

Significant Accomplishments and Conclusions:

To assess and track quality of our software delivery, we defined a maturity model for our
code-based research deliverables. The figure below list code maturity levels as defined
by the VADER team.

Level | Description Deliverable
Repeat 1 Desktop under a researcher’s desk; local processing of data Research Paper
2 All code checked in to code sharing repository like github Code Repository

Research Paper

3 Coding standards followed; well documented installation notes; Docs

developer manual Code Repository
P Research Paper
4 Loose coupling; Target runtimes not OS; Autodeploy scripts Deployable Packages
Docs

Code Repository
Research Paper

5+ Robust authentication and authorization framework; service-oriented Tools delivered via browser

Reuse architecture; integration services; built-in security gzg‘:yab‘e Packages

Code Repository
Research Paper

The table below lists our analytic deliverables alongside their code maturity level.

Analytic Code Maturity Level
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Solar Disaggregation

ML based Power Flow - Forward

Wl w | s

ML based Power Flow - Reverse

Topology Estimation

Switch State Detection

N[N | P

Virtual SCADA Demonstration

Load Forecasting 1

One major accomplishment for this project was the installation of VADER analytics at
Southern California Edison. (SCE). The Advanced Technology Group (ATG) at SCE
hosted us on their site to install VADER algorithms behind their computing firewall. We
successfully deployed Solar Disaggregation and ML-based Power Flow (MLPF) inside
the SCE computing environment, enabling their data science team to connect their
internal datasets and test our algorithms with field data. We provided SCE staff with
analytic code, installation environment, and deployment scripts. In addition to that, we
provided onsite training to SCE data scientists, showing them how to test, and use
VADER analytics. The analytics integration and deployment was successfully tested on
a 6-node cluster in SCE’s computing environment.

The VADER project exposed some major challenges associated with acquiring the
massive data required for machine learning based algorithms.

For data science projects, like VADER, access to real world data is critical to properly
validate the analytics developed under the scope of the project. However, gaining access
to utility data can be challenging for both the researchers and the utility partners. The
numerous sets of data, varying systems of records, incomplete of mapping between these
data sets can result in an iterative process of generating a usable data set. This iterative
process may not be easily automated and could be labor intensive. Therefore, it is highly
important to communicate very clearly on what the available data will look like, to the level
of headers, and fake sample data, to make sure it will match with the analytics once the
legal agreements are in place and the data can be transferred. Additionally, having
multiple sources for data can provide flexibility if significant delays are encountered.

Inventions, Patents, Publications, and Other Results:
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Kara et al. “Estimating Behind-the-meter Solar Generation with EXxisting
Measurement Infrastructure (Short Paper)” , Buildsys’16 ACM International
Conference on Systems for Energy-Efficient Built Environments (2016)

Raffi Sevlian and Ram Rajagopal, "Distribution System Topology Detection Using
Consumer Load and Line Flow Measurements", IEEE Transactions on Control of
Network (to be submitted)

Yizheng Liao, Yang Weng, and Ram Rajagopal, “Urban Distribution Grid Topology
Reconstruction via Lasso”, IEEE Power & Energy Society General Meeting, 17-21
July, 2016.

Yizheng Liao, Yang Weng, Chin-Woo Tan, and Ram Rajagopal, “Urban
Distribution Grid Line Outage Identification”, IEEE International Conference on
Probabilistic Methods Applied to Power Systems, 17-20 October, 2016.

Jiafan Yu, Junjie Qin, and Ram Rajagopal, “On Certainty Equivalence of Demand
Charge Reduction Using Storage”, Proceedings of American Control Conference,
Seattle, WA, 24-26 May, 2017.

Bennet Meyers and Mark Mikofski, “Accurate Modeling of Partially Shaded PV
Arrays”, Proceedings of Photovoltaic Specialists Conference (PVSC-44),
Washington, DC, 25-30 June, 2017.

Jiafan Yu, Yang Weng, and Ram Rajagopal, “Data-Driven Joint Topology and Line
Parameter Estimation for Renewable Integration”, Proceedings of IEEE Power and
Energy Society General Meeting, Chicago, IL, 16-20 July, 2017.

Jiafan Yu, Yang Weng, and Ram Rajagopal, “Robust Mapping Rule Estimation for
Power Flow Analysis in Distribution Grids”, North American Power Symposium,
Morgantown, WV, 17-19 September, 2017.

Yu, Jiafan, Yang Weng, and Ram Rajagopal. "Mapping Rule Estimation for Power
Flow Analysis in Distribution Grids." arXiv preprint arXiv:1702.07948(2017).
Yizheng Liao, Yang Weng, and Ram Rajagopal, “Distributed Energy Resources
Topology Identification via Graphical modeling”, IEEE Transactions on Power
Systems, 2017

S. Ben Taieb, R. Rajagopal, S. Ben Taieb, J. Yu, M. Neves Barreto, and R.
Rajagopal, “Regularization in Hierarchical Time Series Forecasting With
Application to Electricity Smart Meter Data,” Proc. Thirty-First AAAI Conf. Artif.
Intell., no. 2011, pp. 4474-4480, 2017.

M. Malik et al. “A Common Data Architecture for Energy Data Analytics”, IEEE
SmartGridComm 2018

Jiafan Yu, Yang Weng, and Ram Rajagopal, “PaToPa: A Data-Driven Parameter
and Topology Joint Estimation Framework in Distribution Grids”, IEEE
Transactions on Power Systems 2018
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e Bennet Meyers, Michaelangelo Tabone, and Emre Kara, “Statistical Clear Sky
Fitting Algorithm”, World Conference on Photovoltaic Energy Conversion, 2018.

e N. Laptev, J. Yu, and R. Rajagopal, “Reconstruction and Regression Loss for
Time-Series Transfer Learning,” Proc. SIGKDD 2018, 2018.

Path Forward:

The work accomplished over the course of the VADER project has provided a foundation
for many other efforts at SLAC. VADER’s data processing pipeline was initially deployed
on Amazon AWS and has been used as a basis for the data processing pipelines in new
projects that have started in FY19 at SLAC. Most notable are the OpenFIDO platform
funded by the California Energy Commission under the EPIC program from FY18 through
F22, as well as the LoadInsight, funded by DOE’s Advanced Grid Modeling Program in
FY18 and DOE’s Technology Commercialization Fund in FY19. The data pipeline has
also been used for the SETO-funded PVinsight project that kicked of FY19.

Many of the analytics that were first developed for the VADER project are being further
developed in new projects. The statistical clear sky fitting (SCSF) work served as the
basis for the PV-Insight project. In addition the ML-based powerflow analytics are being
further developed for use in California Energy Commision projects HiPAS and SCRIPT.
Looking further the solar disaggregation work has served as the basis of a number of new
proposals submitted this fiscal year that still under review, most notably would be GMLC.

Another continuation of the VADER platform is the Grid Resilience & Intelligence Project
(GRIP). This GMLC funded project is borrowing several architecture references
developed in VADER. Although, GRIP is being developed on Google Cloud Platform (not
Amazon Web Services, on which VADER was built) architectural references are
transferable, particularly in the areas of data management, data pipeline, and serverless
functions.

The code for the project is open sourced and available for further development (currently
hosted at: github.com/malikmayank/VADER-Analytics/).
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