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Why do we need more efficient s

Iabortmies

computers? ‘
" Google Deep Learning Study Feeture 1 6*6 3: if‘qg.
= 16000 core, 1000 machine GPU cluster Feature 2 v s S EEpEEE = B

= Trained on 10 million 200x200 pixel images

= Training required 3 days

= Training set size set by what can be
completed in less than one week

= What would they like to do? 2
= ~2 billion photos uploaded to internet per day (2014) 3
= Can we train a deep net on one day of image data? nge wih s hamteky
= Assume 1000x1000 nominal image size, linear scaling ol
(both assumptions are unrealistically optimistic)
= Requires 5 ZettalPS to train in 3 days
(ZettalPS=10?! IPS; ~5 billion modern GPU cores)

= Data is increasing exponentially with time

= Need >106-1018instruction-per-second on 1 IC  q Le, icee icassP 2013
= Less than 10 f) per instruction energy budget




Where Are we Today? ) ==

= Single Unit: Nvidea Tesla P100 GPU

= Most advanced GPU processor specs, released
late 2016

= 20 TFLOPs 16 bit peak performance w/ peak
power dissipation of 300W

= 70 GFLOPs/watt or about 15 pJ/FLOP (16 bit)

= Supercomputer: Sunway TaihuLight (China)
= Top supercomputer in the world |

= ShenWei processor
= 90 PFLOPs peak, 15 MW power |
= 6 GFLOPs/W or about 170 pJ/FLOP

= Need >1000x improvement to tackle
internet-scale problems




Evolution of Computing Machinery @,

1980’s
1990’s
2000’s

2010-

Present

20257

20357

100 nJ/MAC

10 nJ/IMAC —
1 nJIMAC —
100 pJ/MAC

—  Density scaling and

Moore’s Law Era:

Dennard Power Density

10 pJIMAC —=

Single GPU Card, Late 2016 €&——

Heterogeneous Integration

1
1
1 pJIMAC 1+ Era: Close integration of
I emerging memory, low
—L
TR L __Voltage logic, photonics
10 fJIMAC —[r================———————-
1
1fJIMAC - Neuromorphic Target
100 aJ/ MAC E EfflClency Only pOS-Sible
i with new computing
10 aJIMAC paradigm
i
1 aJIMAC —- Biological Neurons™
I

l---- " b,

Scaling |
Modern Computer W |

“Let physics do
the computation”
Our brain is the

ultimate example
of this paradigm

*Caveat: Biological neurons
robably do not perform MACs
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Metal Oxide Resistive RAM (ReRAM Ji .

= Sandia TiN/Ta/TaOx/TiN example device 02 anions

TiN exchange

= Starts as insulating MIM structure

= Forming: remove 0% - soft breakdown Ta (15 nm) m switching
©)
. . . | L5000~ channel
= Bipolar resistance modulation TaO, (5-10 nm) i (+) charged
=  Excellent memory attributes: Switching in vacancies
less than 1ns, less than 1 pJ demonstrated, TiN
scaling to 5nm, >10*2 write cycles
_ Preformihv L Formiing SET-RESET
2.0x10° | A ] ] 2.0x10° | Read Window
4.0x10° |- \\\ _______
~ oo} {1 < “r
< £ <
§ ™ § 2.0x10° | E 2.0x10%
O Lox10° F Ta (50 nmj) - 8 ____________
Ta0, (10 nmj ol -4.0x10" |
-4.0x10° | Titt - | | | | | | | | | et
-1I-0 ' -0I-5 ' 010 ' 015 ' 1I-0 e 1iolt:§0e (\Z5 o ,izl.s i -zl.o T T R T v TR
Voltage (V) Highest current Voltage (V)

switching process




Crossbar Theoretical Limits () i,

= Potential for 100 Thit of ReRAM on chip " ] "] ] T -
= If each can perform 1M computations of RRIRE % ROE
interest per second (1 M-op): PEIA NN
= 102 active devices/chip x 10° cycle per [ peice
second =108 comps per second per chip F {:d_li [ ] E
= Exascale-computations per sec on one chip! 2F { ﬁﬂ: (]88
= |n order to not melt the chip, entire area ReRAM Density vs Min. Feature Size
must be limited to ~100W o Busumes 4 coll, bt on)
" Allowed energy per operation = P x t/op < 0 g e iaen ]
= 100W / 108 = 1016 = 100 aJ/operation 3 | i
= 10nm line capacitance = 10 aF 3 \
= Can charge line to 1V with 10 aJ '

" " " PR S S | " "
0.81 2 4 6 810 20 40

= Drawback: “only” ~100B transistors/chip i i s, B




Why is it essential to cram so many e
computations on a single chip?

Can you simply connect millions of ultra-efficient chips?
Yes, but every time data leaves the chip, it is elevated in the comm hierarchy

- Energy efficiency per operation is reduced

Energy (fl/bit)

E
£
S
8
a
a
<

Board Level Routerto

Compute .
Node Optical Ethernet
Package = Package < Package i
DU E U - pDAe D = Qe 9
= S = N N
On Chip On Chip On Chip On Chip < o On Chip
Router Router unter Router R o Router




How does a crossbar perform a i
useful computation per device?

= Electronic Vector Matrix Multiply

Mathematical Electrical
VW=l A W |
K W W, . | XY i i :
[V1 v, ng 1,1 1,2 1,3 i 1 : : G\:,Lll‘ C?:’l}\ é‘:?‘ i
o War Wos | = Ve e S
I (I 2,1 2,2 2,3 1
W Y, W V! :
|3 3,2 33 : 3 : I G\:f'% G;, G:’?\l :
I 1 |

————————————————————————

[|1=zvi,1wi,1 =2V, Wi,  13=2V; Wi, | :I1=ZVL1GL1 1,=2V;,G;, I3=ZVi’3Gi’3:
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Basics of Neural Networks @

Simple Network:

Backpropagation
Basic Building Block
Incorrect - Correct — no
adjust 0 9 0 0 adjustment
y 0 0 Outputs
Neuron Hidden
Layer
Weights W
Inputs

Inputs



Mapping Backprop to a Crosshar ~ @&

Backpropagated error
from following layer

¥

(@]

~
=
N

ctrl 1
5 oS 2 .
e P (@—%
u
§ N 2y
= . 1 o ©
NN ()2
1 — 1 Sum 009
El I »%5
(7))
_DO_I_‘
5— 1 % ’z@t %, 1 (i"r‘: é
g- 1 .% % 1 u =

S

Vector Matrix Multiply, Rank 1 Update: @w@

Key kernel used in many algorithms  Outputs to next layer




Analog Core: Forward Propagation )
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Analog Core: Back Propagation e

error o,
2
Y % >Ak=;ij5k
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Accelerator Architecture @

Network is actually a grid, omitted here for simplicity
On-Chip Network

Chip Control & e Memory (buffers, training sets, ...)
Bus Interface [might be added to package via 2.5D integration]

Column Drivers | MUX & ADC

r
w/ peripherals

Neuron Function

ReRAM
Crossbar

Array
w/ peripherals

LuT

Integrators

Neuron
Function

Neuron
Function

- Row Values
Row Drivers

Integrators

Ore tiple crossba ome digita VID operatio Peripherals Neuron Function
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What device properties are

Neural Algorithm
CrossSim SST

CrossSim

CrossSim

Electrical Compact
Models

Energy anc

How do specific devices work in
system?

Neural
Algorithm Level
Model

Computer
Architecture Level

Model
______—JV

Circuit Level
Models

Device Level

Accuracy
3

Delta G (mS)
COoOO00O0O M

|

File Types

Device to Algorithm Model Efeasne B

i

— Exp. Desived -
e el Nunmesic -
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0 5 10152025303540
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Experimental Device Nonidealities @

Read Noise
= |deally weight would increase and decrease 0\
linearly proportional to learning rule result = lp+Al
= Experimental devices have several 5 11,
nonidealities: Write Variability, Write 3 l,-Al
Nonlinearity, Asymmetry, Read Noise
= Circuits also have A/D, D/A noise, parasitics

Time (V,g5q=100mV)
Conductance versus Pulse

® = |deal /f = Write Variability o = Nonlinear

A
OO0O0O00O0O0O0
< OoO o 0'980 _ _
3 o © A Y ®e Asymmetric, Nonlinear
O o E I © .
S o ®e,
O @ o @
® .“. OO o
O Vo ¢ O 4 Co,
I © OOOO(\%.»

Pulse Number (V. i.=1V, t,,c=1HS)




ReRAM Measurements

= DC Current-voltage “loops” sweeps
are not time-controlled
= Excessive heating and early wearout
= Do not provide info on dynamics
= Physical switching < 10ns

= Need pseudo RF setup to measure
= Ground/signal, conductor backed
= Agilent B1530 module
= 10 ns RT/FT, 10 ns PW
= 1V nominal, ~140 mV overshoot

V1e
O anions
TiN exchange
,o, _r"channel
TaO (5-10 nm) o I (+) charged
vacancies
TiN

) -
o
3

Oscilloscope

1.2

1.0
~ 0.8
>

© 0.6
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y
y
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0.4

0.0

. Rise =12.8 ns

- Amp =114V

Fall=11.4 ns

-4x10° -2x10® O
Time (S)
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ReRAM Analog Characterization L=

RESE
6.0x10 S.E T 6.0x10* - |
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08
ezl
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Pulse Number (#)
= Use as a neuromorphic weight requires precise analog tuning

= Dataset requires 1000 repeated SET and RESET pulses
= Nominal pulse values

_ Current
= SET: +1V 10ns RT/PW/FT Write Pulse  Measurement
= RESET: -1V 10ns RT/PW/FT : Do Fulse
= READ: 100 mV 1 ms RT/PW/FT ¥

X

t




Pulse Width Analog Measurements @&

100 on->off cycles,
(200k pulses)

1000 ns PW

| 0 . ‘ ) )
t i Pufise Humben(#) 8050 ao8

|
2000 pulses per
on->off cycle




Effect of Pulse Width and Edge Time® .

200 . T . T y T . 100

-
o
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@ S 160 2
g r_———\__ 5 2 60
s o 5
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S | = 10ns |1 5 120 My 8
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Pulse Number (#) Pulse Number (#) Pulse Number (#)

= Shorter pulses may be employed to lower conductance switching range

= Linearity qualitatively similar across Pulse Width (PW) and Edge Time (ET)
= Best for SET at 100 ns
= Best for RESET at 1 us

= Relative conductance change increased with shorter Pulse Width / Edge
Time

Nominal Pulse Voltage Values: SET: +1 V RESET: -1V




Repeated Pulsed Cycling
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TaOx ReRAM in Backprop Training @&

%‘ampﬁﬂlmi@@t% Il

ol oy B
- -3
¥ Ly s,
< g

-  Exp. Derived
—  ldeal Numeric

_ 2@. — Exp. Derived |

—  Exp. Derived

— ldeal Numeric | = Ideal Numeric
0 : 10152025303540 O T 7T 717 L e g, i
® * iaining Epoch 0 510152025303540 0 510152025303540
Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10




— B Denived
= |idesl Numenic

lmh|i||nml|l|
0 5 10152025303540

Traiining Epoch Training Epoch Training Epoch
TaOx Large Images File Types
10 ns 84.45 77.67%
100 ns 78.48% 67.78%
1us 71.48% 56.33%

How can training accuracy be improved?




Li-lon Synaptic Transistor for Analog e
Computation (LISTA)

G-V for LISTA Transistor

€ cauuy
C

anode/gate R 250

Va electrolyte/insulator E 5 200
+ =
LiCoO, — Li14xCop + xLi" + xh -~

i 2 150
_:<source cathode/channel  drain O

c—

Ve e 100

v 50

current-collector 0

500 nm anode/gate .
l ‘ electrolyte/insulator

RPN ey fT'f\-f L

source cathode/channel SiO>  drain

E. Fuller et al, Adv Mater, accepted 2017




Analog State Characterization ) =

Y]
N
1)
o

200

Gsp (uS)

20 30 40 50 60
t (ks)

10

TaNv DaDAM

LISTA > 200 states

5 10 15
Conductance {5)

PCM Array
4l Measured
3 AG-per-pulse
[uS]

180 200 220 240
Go (1S)

0 From all 31 million’ T
partial-SET pulses G [uS
E. Fuller et al, Adv Mater, accepted 2017 GwW BE,, ot al.,qEEEngD 20%9



LISTA-device Performance for Backprop Algorith@%

Small Digits | File Types | Large Digits
L L 99 T T 1T T T 1 99 (N N N I N J
= 7
590 =
O
<
— LISTABased | — USTABased | = Exp. Derived
. = Ideal Numeric ; - — |deal Numeric - - — |deal Numeric ]
0k “1 . mjn.njm "I o 3N TR R N N N N P - T T T T R
0 5 10152025303540 0 5 10152025303540 0 5 10152025303540
Training Epoch Training Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

E. Fuller et al, Adv Mater, accepted 2017
I



Circuit-Level Improvement =)
TaO, — File Types TaO, — MNIST

99 T7 w T . |
99 ot Ideal Numeric

N

= Allows much Ideal Numeric

closer to ideal with
high variability

Circuit
Technique

Accuracy
O
o
Accuracy
(e}
o

Single Device

TaOx device 0 single Device N SN
0 i 0 10 20 30 40 0 10 20 30 40
LISTA a.chleves (@) Training Epoch (b) Training Epoch
essentially perfect ,
LISTA — File Types LISTA - MNIST
accuracy 99 T 7 99 —TCiel
. i i Ideal II'C.lt
= Requires tradeoff > [ SigkDeie ] » Numeric | echniqu
of energy/latency €4, E -4 © 98 -
- Ideal Numeric = : =
for accuracy — o { 9 97#/Single Ideal -
< 1 < 96 Device w/ A/D-
exact tradeoff : o e T AL
I I | = | | |

depends on 0

. (a)O 10 20 30 40 (b)O 10 20 30 40
algorithm regs. Training Epoch Training Epoch

Agarwal et al, submitted 2017



Energy and Latency Comparison () s,

oveview | | DigitalSRAM | Digital ReRAM |  Analog ReRAM Crossbar

Equivalent Area 400 mm? 32 mm? 11 mm?
~450 1kx 1k matrices [64nm pitch]

~1000 nJ ~ 700 ) ~15nJ
5% 50% 100% (crossbar is above periphery)

Matrices per 400 mm? Chip ~450 ~5,500 ~15,000

The above figures do not include a SIMD engine or on-chip routing fabric, and are based on a 14nm FinFET process.




Energy Analysis .

Per-Component Breakdown _ Digital SRAM Digital ReRAM Analog ReRAM Crossbar

Matrix Storage Area 800,000 um? 35,000 m? 10,0001 m?
1024x 1024 Read 30n)/15us 15n) /4us ~3nJ/~15us

Digital: 8 bits/value
Analog: 1 cell/value Read Transpose 300 nJ/ 65 ps 15n)/4us ~3nJ/~15us

[Values are per-array] Write 30n)/15us 50n)/45us “3nlf ™ LSps

Multiply Accumulators a4 19,000 m?
. Performed by crossbar
[256 in parallel] Run [1M ops] 200 n) /4u s

Output LUT Area 1,400 m?
[8 bit-> 16 bit] Read [1K values] i1n)/1lus

Input/Output Buffers Area 13,000u m?
[8 bits] Per Run ~@.1nl Uses Digital Methods

128 Entry 1024x8 Vector  [addd 90,000u m? 4,000 m?
Cache (8 matrices per cache) lizlle} ~01nl /~0.2ps| ~“1nl/~“4ns
[Values are per vector] Write ~0.1n)/~02us ~1nJ/~50ns

Digital ReRAM based on output from X. Dong, et. al., NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7, pp. 994-1007, July 2012.
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Conclusion s

Dennard (constant power density) scaling has ceased and
Moore’s law is slowing

As this slows, a new direction will be needed to achieve the
continue the exponential improvements in performance/watt
(aka energy efficiency)

New paradigms like neuromorphic computing will be required
for sub-fJ computing

We now require a device through system design mentality
= Motivation behind CrossSim

Oxide-based resistive memory offers intriguing device options
for both eras

Novel lithiated device LISTA and circuit techniques offer
significant potential in the development of a low energy neural
accelerator

Microelectronics Reliability & Qualification Working Meeting 34




Thank you! .
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Energy Analysis .

Analog Breakdown Energy Latency
Values are per indicated operation

Array 4,300 m? ~0.2nJread ~ 1 ns (propagation)
[1024x 1024] ~ 2 nJ write

Temporal Drivers 460 m? ~ 2 pJ read 1 nsx 2bits
[1024 rows] ~ 0.3 nJ write

Voltage Drivers 5,000 m? ~ 2 pl read <1lns
[1024 cols; 16 voltages] ~ 0.3 nJ write

Integrators/ADCs (reads only) 3,000u m? ~2nl) 1 nsx 2bits




Multiscale CoDesign Model:
Neuromorphic Crossbar Accelerator

Small Digits File Types
¥ L 9 T

Large Digit:
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los Sandia Cross-Sim:
IHos Translates device measurements and
o4 crossbar circuits to algorithm-level

Target Algorithms

* Deep Learning

* Sparse Coding

* Liquid State
Machines

Architecture

- % © % &
Algorithms <

/

Modified McPAT/CACTI:
RI—& Model performance and
Digital energy requirements

Core

Sandia’s Xyce Circuit Sim: Simulate
Circuits y m@mm  Cosshar circuits based on our devices

Drift-diffusion model of ReRAM band diagram
& transport (REOS, Charon)

LICoO, —= LisCop +xLi* +xh

source  cathode/channel  drain

Vso[_

In situ TEM of filament switching: Use
DFT model to interpret EELS signature
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Bevond Moore Co-design Framework

Modeling

10,000x improvement: 20 f] per instruction equivalent Experimental

Algorithms and Software Environments
* Application Performance Modeling

Computer System Architecture Modeling
* Next generation of Structural Simulation Toolkit
* Heterogeneous systems HPC models

ccccccccccc

Microarchitecture Models
*  MCcPAT, CACTI, NVSIM, gem5

Circuit/IP Block Design and Modeling
* SPICE/Xyce model

Component Fabrication
* Processors, ASICs

* Photonics

* Memory

Test Circuit Fab and Measurement
¢ Subcircuit measurement

Compact Device Models

* Single device electrical models

* Variability and corner models

Device Physics Modeling

* Device physics modeling (TCAD)
* Electron transport, ion transport
* Magnetic properties

Process Module Modeling
« Diffusion, etch, implant simulation *
e EUV and novel lithography models

Atomistic and Ab-Initio Modeling
* DFT - VASP, Socorro ;
e MD-LAMMPS

Exa_mple activities Fundamental Materials Science
within a MSCD ¢ Understanding Properties/Defects via
framework Electron, Photon, & Scanning Probes

Device Measurements
* Single device electrical behavior
* Parametric variability

Device Structure Integration and

Demonstration

* Novel device structure
demonstration

Process Module Demonstrations
* EUV and novel lithography
« Diffusion, etch, implant simulation

@

* Novel Materials Synthesis



Integrated Storage Class Memory

e ReRAM
e STT Magnetic RAM
e CBRAM
e Ferroelectric RAM Integrated Communication Devices
Integrated Accelerators: ~ @« — — — — — — — — — — — — — e Photonic
e Special function digital | g | e Plasmonic
« Analog | | o« Low Voltage Electrical
e Optical | |_e Superconducting

revervrrBervevereevevers S

To next |
node |

Low voltage high performance logic:
e Tunnel-FET

e Negative Cg FET

¢ Single Electron Transistor

41




TaOx ReRAM in Backprop Training T

(10ns)

Small B}Elgjﬂﬁtﬁ
0 T T i L4

— Exp. Derived — Bp.Derived | o0l B perived |
= Ideal Numeric 0 — ldeal Numeric —  Ideal Numeric
0
0 5 10152025303540 0 510152025303540
Traiming Epoch Training Epoch
# Training # Test Network Size
Data set
Examples | Examples
UCI Small Digits[1] 3,823 1,797 64x36x10
File Types[2] 4,501 900 256x512x9
MNIST Large Digits[3] 60,000 10,000 784x300x10

How can training accuracy be improved?




Switching Power & Energy Measurementl&.

SET
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Energy determination requires fast
pulsed measurements:

Can measure resistance change
during pulsed switching with
pulsewidths > 100 ns and
edgetimes > 10 ns

E=[ P

=800 pJ (RESET)

e =400 pJ (SET)
Wasted power/energy past first
~1ns of pulse
Lower energy with high resistance
devices, sub-ns pulse

e > 1pJ demonstrated @ <1nsin

similar TaOx device (by HP)




Theoretical Efficiency Analysis =

SRAM crossbar: ReRAM crossbar:
— | V—
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S;AMS must be read ?ne row at atime Energy to charge the crossbar is CVZ;

charges M columns; _ E o< C < number of RRAMs & NxM
E = N Rows x O(N) wire length x M ~ O(NxM)
Columns

~ O(N*xM)

Implication: Crossbar is O(N) better than SRAM in energy consumption for
vector-matrix multiply computations



Technological Considerations:
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HAANA Crossbar Accelerator Design .

Initial work by several groups indicates
order of magnitude energy efficiency
gains are possible using a ReRAM
accelerator

The assumptions and outcomes of these
models vary significantly

HAANA goal: develop a Multiscale

CoDesign Framework which can evaluate |

our neural crossbar accelerator
algorithms, architectures, and devices on
a “level playing field”

Evaluate architectures and devices for
accuracy, energy, perf.

Once a clear energy advantage
demonstrated, move forward with

M
R B
Neural Digital
Core Core
R Bus I R Bus | R
Digital Neural
Core Core
R Bus R Bus |R
L] L] ! L]
Column Input Buffer
é , "B \
LMY VoS
3 w e
£ » ‘1» =
= +1 Y 2
o o

K\ Columln OultputI Buffer /

technologx deveIoEment




How can we get to fJ computing?

=

bescription NPU-1 NPU-2 NPU-3 TrueNorth
ISystem clock frequency 100kHz 1 MHz 10 MHz 1 kHz
ISynapses per neuron 500 500 500 256

verage energy per device update 1 1] 1 1] 26 p]
IEnergy per update op cycle (per core) |250p] 250p] op

perations per second (per core) 250 GOPs 250 GOPs 250 GOPs
ISingle core max power 25 uW 250 uW 25 uW
khip Area 4 cm? 4 cm? 4 cm? 4.3 cm?
kores per layer 800 k 4 k
ILayers per chip 10 1
I\Ieurons per chip 200 B 1B 1M
IChip Max Power 1200 W 10 KW 200 W 70 mW
khip Max operations per second 0.2 ExaMACS /10 ExaMACS 0 ExaMACS J28 GigaOps

erations per second per watt 11015 MAcs/w Y1015 Macs/w ho17 MACS/Wkx10110ps/W

MACS = Multiply Accumulate per Second

-




How do we get to 10 f) per inst? ~ @i

= CMOS scaling not providing significant energy efficiency gains
= Many algorithmic, architectural, and device answers:

= Neuromorphic algorithms

= Analog accelerators

= mV switch (e.g. TFET, NgcFET)

= Superconducting electronics, quantum computing...
= Which horse should we bet on??

= Well...studies for each approach “prove” each respective
option to be the best path forward

= Winner not yet clear, most will require major development
efforts to realize full potential (SS)

= Need systematic, universal method to determine best

aeeroaches for further investment...
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