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3 Introduction

Wind turbine wakes can significantly influence both the power output and
loading of wind turbines within plants

DOE SNL/SWiFT facility unique open wind plant test site from studying
turbine-turbine interactions

Wake Steering Experiment performed in collaboration with Sandia National
Laboratories and the National Renewable Energy Laboratory as part of the U.S.
Department of Energy's Atmosphere to Electrons (A2e) program

DTU SpinnerLidar uniquely capable of capturing upstream wake deficit at the
required temporal and spatial resolution for synchronization with turbines

Detailed field campaigns that provide high resolution wind turbine, met tower,
and lidar data in various waked conditions remain scarce.

All data will be made available through the DOE Atmosphere to electron (A2e)
Data Archive and Portal (DAP)



4
1
SWiFT Facility Overview

SWiFT facility created to:

o Measure wind plant flows and turbine-turbine Interactions

O Perform prototype testing of innovative rotor technology

Wake steering experiment sought to quantify wake deflection vs. yaw offset and the
corresponding effects on a two-turbine system

o Characterize wake shape, velocity deficit, turbulence, and dynamics under various conditions
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5 SWiFT Site Instrumentation
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Turbines

• WTGa1, upstream turbine highly instrumented,
1 blade root strain measured 4/19/17 — 7/14/17

• WTGa2, waked turbine highly instrumented,
1 blade root strain measured 7/11/17 — 7/13/17

Wake Flow Diagnostic:

• DTU SpinnerLidar

Data collected:

12/15/16 — 7/14/17
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5 DTU SpinnerLidar Scan Pattern
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7 WTGa I: Lidar Simulation and Selection
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8 WTGa I: Measuring impact of inflow - Stable
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9 WTGa I :Wake Tracking vs inflow
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10 WTGa I : Measuring impact of inflow
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11 WTGa I: Measuring impact of turbine state

• Bulk Richardson = 0.7

• z/L = 3.1

• a = 0.3
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12  WTGa I: Stable BLVideo at 2.5D
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1 3  WTGa I: Neutral BLVideo at 2.5D
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Observations and challenges

Wake deflected z0.5D for 25 deg yaw offset

• Wake behavior very dependent on inflow characteristics

• Wake tracking for various inflow conditions is challenging

Wake can be defined from lidar turbulence estimates

• Onboard turbine wind direction sensor very inaccurate

• Spatial calibration of lidar and yaw heading sensor were very important

• 1 deg error = 2.35m at 5D

Time synchronization was essential
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15 WTGa I: Power and Root Bending Fatigue Loads
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• The correlation of DEL with wind speed is seen to be as substantial as the yaw offset

• Data reveals that flapwise DEL increases with negative yaw and decreases with positive yaw as the velocity

shear loading is balanced

•Yaw offset is observed to reduce power beyond around ±10°

• Yaw offset reduces power and alters the fatigue loads for wind turbines, both negatively and positively for the

SWiFT turbines

•An effective "cose' is defmed which compares DEL and power, normalized to the wind speed bin's zero yaw

offset values

• For the high-shear data analyzed, the SWiFT turbine has the best overall performance at around 10-12° yaw

offset

30



16 WTGa2: inflow Conditions
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17 WTGa2: Waked Turbine Experiment
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18  WTGa2: Measurement Arc and Power Output
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19 WTGa2: Flap Moment,Average and DEM

2 0.8
o)
>
co

g
o 0.4
c

0.2
2 1.5 1 0.5 0 -0.5

y <-west-east-> (D)

2.2

2

0.8

0.6

2 1.5 1 0.5 0 -0.5 -1

y <-west-east-> (D)

Fatigue loads higher under waked conditions

D  KM normalized by fit of non-waked D   KM with met tower hub height wind speed

Partially waked turbine has 10% higher D  K than fully waked case

D   F.M returns to non-waked conditions at lateral wake positions farther than 1.5D



20  WTGa2: Power/Fatigue Loads Comparison Metric
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21  Conclusion

Fla-Dwise bending DEL from the SWiFT turbine was observed to increase
witn negative yaw and decrease with positive yaw, based on the level of
shear across the rotor disk

Based on loads reduction and a relatively constant power, wind turbines
may have optimal performance at a nominally positive yaw offset, based on
the atmospheric conditions

The fully and partially waked conditions reduce the power output and
increase the fatigue loading on the downstream wind turbine

Adjacently-waked case creates a power increase with a reduced fatigue
loading relative to the fully and partially waked cases

A 10% increase in fatigue loading occurred during partial wake
impingement, centered at the rotor tip, relative to when the turbine was
fully waked

Certain regions of wake position where shifting the wake was more
beneficial than others with the wake steering control authority of the
upstream wind turbine

When wake was located at edge of rotor, it was very beneficial to shift the
wake away from the turbine using wake steering from both a power and
fatigue loads perspective

The complete Wake Steering experimental dataset will be
available for download at a2e.energy.gov



22 Example Wake Positions
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23 Rotational Domain Frequency of Example Wake Positions
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