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In the Past we Measured DCS and Alignment of
NO(A) State Collisions.
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Crossing two beam: NO/He with NO/Ar. NO is
Scattered from Each Beam Simultaneously.
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We Excite Different Rotational Levels of the A state
Using Different Transitions.
In
te
ns
it
y 
(a
.u
.)
 

120

100

80

60

40

20

o

NON=0) A <-- X LIF spectrum

R21(0.5)
VY

rl
ni

R21(1.5)

RI

RI
RI

 A 

02q0,5).R11(0,5)

ni

NI

021(1 .5)+
R11(1.5)
•.0

ft!
021(2.5)+

R11(2.5)

;rkir. 

011(0.5)

226 084 226 104 226.124 226.144 226 164 226 184 226.204 226 224 226 244 226.264 226.284

wavelength (nm)

CRF PAL
I GAS PHASE CHEMICAL PHYSICS .A.M1=11\



Easier to Compare the Calculations of the NO He and

NO Ar scattering when performed in this manner.
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QM Scattering Calculations do not Reproduce

Exactly the Results but Capture the Trends.

Experiment
under
Estimates the
forward
scattering due
background
subtraction
procedure
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Collisions at High Collision Energy Can be Roughly
Thought of as Hard and Sudden.

A Xccl

The classical dynamics associated with hard ellipse scattering can be analytically
described. The Apse vector is the vector along which angular momentum is transferred
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Detection with Linear Polarized Light Show the

Alignment Inherent in the Images. NO(N 9)

Exact model: V

Experiment: V
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Calculated and Experimental Images are in Good
Agreement.

Experimental images
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N' = 4 Exact model

N' - 4 experimental DCS
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Collisional Energy Transfer of Oriented NO (A, v 0, N=2)

1) Prepare NO(A) with circularly polarized light at "°226 nm
2) Orient K vector with relative velocity vector of collision
3) Detect with circularly polarized light

532 nm

Photoelastic Babinet
Modulator Compensmor

600 nm 226 nm
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Ls

Scheme for production of NO(A) and detection of
NO (A).
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Hyperfine Depolarization Makes the Orientation
Oscillate but an Average Value of A10= 0.6 is Observed
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Images of Co- and Counter- Rotating NO
After Collision With NO(N=2)
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Scattering images for each final N' in the two geometries. Top row:
co-rotating geometry, bottom row: counter-rotating geometry.
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The intensity of the images as a function of
azimuthal angle are recorded and compared
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C is masured and compared to apse model and
Quantum Calculations.
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Figure 6: Integrals and values of C for each quantum state . For each quantum state the integrals for the co-

and counter rotating geometries are shown in the upper plot, in black and red, respectively. The values of C are

plotted in the lower plot.
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Conclusions

Oriented collisions allow one to test the details of the potential energy surfaces
And inform the scattering calculations.

Co-rotating products are more probable than counter-rotating for low values of N.

This is a four vector correlation.
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H2 Alignment utilizing double resonance and studied with
Velocity-mapped imaging of photo-dissociation products

• The distribution of products VMI imaging provides a measurement of the degree of
molecular alignment prior to photodissociation.

• Even as the simplest molecule, H2 in strong laser fields remains a challenge for high
level quantum theory.

• Single quantum states may be excited with narrowband tunable lasers, providing a
high level of control, minimizing the number of coupled rotational states, and thus
simplifying the analysis of data.
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To measure the alignment of the H2 (E,F) we use a 201.7-
nm laser beam to produce the ro-vibrational state we

desire, then align and detect with 532-nm light.
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To measure the alignment of the H2 (E,F) we use a 201.7-nm laser
beam to produce the ro-vibrational state we desire, then align and

detect with 532-nm light.

H + 1-1* (n=3)

This is the image you obtain of H+
coming from 532-nm Photo-

dissociation of the H2 EF (v=0, j=0)

quantum state.

internuclear distance (A.U.)
 ►

GAS PHASE CHEMICAL PHYSICS



The E,F state lies on top of the B and C states. Those States
Couple to the E,F state via the Electronic Dipole Operator.
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The alignment of the H2 by intense 532-nm light
is quantified by taking images at different 532-nm intensities.

1 .59x1 014 W/cm2
41111b,•

3.92x1 013 W/cm2

1 .97x1 012 W/cm2

2 0

1 8

1.6
cti

08

0 6

0 4

H2 (E,F; J = 0)

532nm Laser Intensity: 1.59x1014W/cm2 (offset 0)

532nm Laser Intensity: 3.92x1013W1cm2 (offset 0.32)

532nm Laser Intensity: 1.97x1012W/cm2 (offset 0.28)

532nm Laser Intensity: 5.06x101
1
W/cm

2 
(offset 0.25)

532nm Laser Intensity: 1.68x10
11
W/cm

2 
(offset 0.09)

532nm Laser Intensity: 5.12x10
10
W/cm

2 
(offset 0)

0 20 40 60 80 100 120 140 160 180

0 (degrees)

5.1 2x1 0 ' W/cm

1 .68x1 0" W/cm2

5.06x1 0" W/cm2



The alignment of the H2 (E,F J=0) as a function of 532-nm laser
intensity is plotted and fitted using an Adiabatic Alignment model

Employing J=O, J=2 and a cross term.
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The angular distribution of the inner ring can be well fit with a model that involves mixing of rotational wave
functions as a function of laser intensity. At the lowest laser power at which we observe signal we can see

evidence of H2(E,F J=2) quantum state mixing
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Analysis of the alignment of the H2 (E,F J=0 and J=1) as a function
of 532-nm laser intensity resulted in polarizability measurement
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Mixing coefficient is measure
of the mixing between the

different rotational states of
the H 2 molecule. From the slope of

this line at low laser intensity we
extract the polarizability

Proposed Work: To remove ambiguity for comparison to simulations, two different
wavelengths will be used to prepare and probe the molecular alignment.
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By modeling the data, one can extract the polarizability
anisotropy of H2(E,F) state when irradiated with 532-nm light.
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How Polarizable is the H2(E,F) state?

Mr IIMMUI

Linear Fit

0.532 1.032E-1

Anisotropy

(a.u.)

Theoretical values in static fields:
600t ground state = 1.9 a.u.*
60C E,F state = -9600 a.u.±

* E. lshiguro, et al; Proc. Phys. Soc. A 65, 178 (1951)
+ Komasa, J.; Adv. Quant. Chem. 48, 151 (2005).

• Anisotropy (sa) values of 312 a.u. is almost 46, A3, respectively.

• By comparison CS2 has 10 A3, 12 has 7 A3 and 1,4 diiodobenzene has about 18 A3.

• The most polarizable state of any molecule to date.



Conclusions

Doing dynamics on transient excited states allows
one to have better preparation of the initial conditions.

We have demonstrated this preparation for NO(A) and H2 (EF)
both having 200 ns lifetimes.

Dynamics not observed on the ground state are studied. In Hydrogen
he mixing with nearby electronic states creates superposition states
with strange characteristics. For NO (A) an oscillating orientation of the J vector
is observed and utilized for collisional studies.
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