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4 Today's Presentation

PhD thesis work conducted at UCI
O Develop of nonsymmetrical ligand for a ctinyl ion uptake as a
hybrid material

O Incorporate ligand into silica sol-gel hybrid material

o Test hybrid material for uptake of actinyl ions including U and Np

O Develop bridged polysilsesquioxane (BPS) hybrid material with
ligand for enhanced hybrid material performance under radiolytic
conditions

PhD thesis work conducted at SNL

O Formulate ligand into optical sensor for the detection of actinyl
ions in aqueous solutions using UV-Vis, FTIR and Impedance
analysis



Designing a Hybrid Material for
Actinyl lon Uptake
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Although nonrenewable, nuclear has the
potential to sustain a green energy future

U.S. energy consumption by source, 2017
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Sum of individual percentages may not equal 100 because of independent rounding.

Source. U.S. Energy Information Administration, Monthly Energy Review. Table 1.3, April 2018, prelirrinary data



71The Nuclear Research of Nilsson Group at UCI

• Solvent extraction of actinides
and lanthanides for reprocessing
of spent nuclear fuel

Experimentation with novel ligands,
synergistic effects, MD simulation,
on-line monitoring and centrifugal
contactors

• Resin and sensor development
for actinides and lanthanides

Radiolysis of solvent extraction
components

Medical isotopes utilizing
radioactive lanthanides

Radiation detectors for beta and
gamma particles

Mission: Separate fission products in SNF from fissile
actinides to be reused as fuel

Nuclear fuel cycle

mining

front end qf cycle 

No*1 conversion

but A end ()I (Vele

final
disposition

spent fuel
reprocessing*

enrichment

fuel
fabrication

nuclear
reactor

interim
storage

'Spent fuel reprocessing is omitted from the cycle in most countries, including the
United States.



Schiff Base Ligand as Aqueous Holdback Reagent: Solvent
8 Extraction ofActinide._

Sulfonated Salen Schiff Base
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Hawkins, C. H. et al Dalton Trans., 2016, 45, 15415-15426
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Schiff Base Ligand Selectivity for Linear Dioxo
Actinides
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Solvent extraction of actinide (V/VI) species of U and Np verses lanthanide and actinide (III)

species in aqueous solution in the presence of aqueous Schiff base ligand holdback reagent

Hawkins, C. H. et al. Dalton Trans., 2016, 45, 15415-15426



iSchiff Base Ligand as Solid Support Material:Aqueous
10 !Sequestration of Actinides
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Motivation for Solid Support:

Minimize solvent waste as a
column filtration system

Eliminate solubility issues

Recyclable

Other applications:
contamination relief system
and seawater sequestrant of

uranium

Motivation for Silica

Mechanically strong,
amorphous network

Tunable particle size, surface
area, porosity and chemical

functionality

Processed as colloids, resins,
gels, and transparent thin

films

1
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11 Development of Salophen Schiff Base Ligand for Actinyl 0
Ion Uptake in Adsorbent Material:A tethered salophen

Salophen Schiff Base
r

o'
Silylated Salophen



Silylated Salophen Synthesis Scheme
12

Protocol: Five-step

synthesis utilizing

sonication

Characterization:

1H and 13C NMR,

and ESI-MS
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Salophen Hybrid Sorbent Material: Sequestration of Actinides 0
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14 
Silica Sol-gel Synthesis Scheme

Hydrolysis
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Sol-Gel Synthesis of Hybrid Material:
Co-Condensation Approach
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16 Hybrid Material Formulation

L
0 /-

1 0 0-Si-0
0

H20

NH4OH cat.

PrOH 2-20%

Sample

Hybrid

Material

High

Loading

Hybrid

Material

Bis-Silylated

Hybrid

Material

Silica Blank

1

TEOS

Monomer

Silica Blank

2

2 mmol

2 mmol

2 mmol

2 mmol

Ligand

Monomer

0.2 mmol

1.1 mmol

2 mmol

0.2 mmol 0

IN.

0

0

pNIPAm

Template

12 wt %

H20

150 mmol

NH3 (aq)

Catalyst

Propanol and

Acetone

Co-solvents

2 vol %1.5 M

12 wt % 150 mmol 1.5 M 2 vol %

12 wt % 150 mmol 1.5 M 2 vol%

12 wt 150 mmol 1.5 M 2 vol %

0 150 mmol 1.5 M 2 vol %



Tetraethylortho silicte (TEO S)

Catalyst

17 
Processing of Hybrid Material as Sol-Gels

Silylated Salophen

Solvent

Solution Sol-Gel

Fiber

Thin Film
Coating

1!".fi
Xerogel

Nanoparticles

Aerogel

Chemical Reviews, 1995, VoI. 95, No. 5
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Structure and Morphology of Hybrid Material Gels
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19 Testing of Hybrid Material Gels for Uranyl lon Uptake

Sample
Percent
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(Theoret.)
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Method Agent
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Testing of Hybrid Material Gels: Batch Uptake of Uranyl
21  Ion in Solution
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Performance of Hybrid Material:
22 pH, Kinetics, Column Chromatography
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Designing an Enhanced Hybrid
Material for the Sequestration
of Actinyl Ions under Radiolytic
Conditions



2 4 Radiolysis of the Salophen Schiff Base

Under ionizing radiation,
organic ligands, including
Schiff bases, degrade this
includes during
reprocessing/ solvent
extraction of SNF

This has been studied under
various radiolytic conditions
and analyzed through

Absorption Spectroscopy

•ESI-MS

•NMR to determine
degradation products

2.0 —
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300 350 400

Wavelength (nm)

  0.025 M Salen
— After 22 h Irradiation
— After 49 h I rra d lotion
— After 71 h I mad lation
— Ater 96 h Irradiation
— After 166 h Irradiation
  After 191 h Irradiation
— After 215 h Irradiation
— After 239 h Irradiation
— After 259 h Irradiation
— After 331 h Irradiation
— After 550 h Irradiation

4:50 5DC

CG Bustillos - 2018 - escholarship.org
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26 Next Steps in Solid-Support Development

• Analyze batch uptake and performance of
BPS Salophen Hybrid Material compared to
Silica Salophen Hybrid Material

• Analyze GIF products with NMR to
determine degradation level of salophen and
support material

• Determine if GIF products can still chelate
uranium as an adsorbent material

n



Salophen Schiff Base as a Thin
Film Sensor for Actinyl Ions in
Aqueous Solution



28 Salophen Schiff Base as Thin Film Sensor

A)

—N N—

OH HO

Silylated

Salophen Glass Substrate

Sol-Gel Monomers

Template Polymer

Solvent

Actinyl Ion Sensor

B) C) D) E)

rri
A) Schematic of sensor formation B) Sensor solutions prior to spin coating, dip coating or

electrospray deposition C) Sensor after coating on glass substrate D) Sensor in contact with

U022+ solution E) UV-Vis of solid sensor



29 Formulating Salophen as Clear Optical Sensor

Sample Ph BPS (g) Ligand (g) PNIPAm (g) Catalyst Co-solvent H20

X 0.1 0.5

n

0 NH
X 1 mL Acetone X

2

L + Acetone +

BPS
\-0

0.5

2 N HC1
1 mL Acetone 360 uL

10 uL

3

L + Acetone +

BPS
\-0

0.5

0—\\

0.1 X
2 M

NH4OH 10

uL

1 mL Acetone 360 uL

4

Ligand Only

X 0.072 X

X 1 mL Acetone X

5

Ligand for

Spray

Deposition

X 0.072 X

X
2 mL Acetone

5 mL DOH
X
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Performance of Optical Thin Film Sensor:Absorption Spectroscopy
of Formulation l through Dip Coating and RT heat-age
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31 Current Work with Sol-Gel Sensor

*Kinetics with error analysis

•Concentration testing: detection range and
limit

•Recycling of thin film sensor

•Confirmation of uranyl chelation with FTIR
and Impedance testing - SNL

•Developing deposition method with
Electrospray Deposition - SNL

n



32 Overall Conclusions

• Salophen Schiff bases can maintain their functionality of actinyl ion chelators in an
adsorbent material if incorporated in a nonsymmetrical manner during a co-
condensation sol-gel polymerization

• PNIPAm can be used as porosity template agent for silica sol-gels to increase
porosity and ion transport

• Salophen Schiff base can be made into an optical sensor for actinyl ions with the aid
of a PNIPAm porosity agent and added functionality of a 3-(triethoxysilyl)propyl
substituent

• It remains to be determined if 1,4-bis(triethoxysilyl)benzene will aid in the delay of
radiolytic degradation of salophen Schiff base chelator and how it performs as an
adsorbent material in comparison to silica sol-gels
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