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The Promise of Mg Batteries

700

* Mg metal anode + high voltage cathode =

transformative energy storage

« Significant growth in Mg electrolyte development
« Aimed at expanding the stability window

 Growing electrolyte toolkit provides opportunity for
systematic investigation
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Instability of the TFSI Anion

Efficiency is argued limited by ~ Extent of molecular orbital  ClI-addition - a CIP anion -
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Mg2Cl22* and Mg3Cl42* complexes are proposed as deposition species in CI: TFSI
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Outstanding Questions — New Approach

Does unbound TFSI contribute significantly to inefficiency?

Can we draw more universal conclusions of TFSI’s role in limiting efficiency?

¢

What lessons from TFSI can be applied to WCA's

Our approach: u“‘
O ,

Explore impact of competitive solvent and anion
complexation on efficiency.

* Treat the ether — glyme solvent series as a v &
continuum of energy of complexation

« Treat contact ion pairing anions as displacive ligands

[er——
(£ ) mv 4 JCE%R JOINT CENTER FOR
o’ L ENERGY STORAGE RESEARCH



Mg Coordination Environment is Dictated by Solvent
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Reduced lon Pairing is Reflected in25Mg NMR

CMD derived, DFT optimized
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Competitive Complexation is Expected

Comparing AG formation of Mg(solv)sTFSI and Mg(solv)e

AG =300 meV
SSIP preferred

AG = 30 meV SSIP in G2
should form in G1
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Speciation Impacts Electrolyte Cathodic Performance
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Reduced TFSI Decomposition with Displacement

Interphase composition should yield less TFSI products with THF -+ G2
Localized deposit — filmed substrate clied dposit — fibrous mophology
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Anion Displacement through Co—Solvent Addition

Can a more strongly complexing solvent displace coordinated TFSI?

0 to 4 molar ratios of G2:MgTFSI2(THF), 4:1 only 0.14 xG2
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Anion Displacement through Co-Anion Addition

Co-anion electrolyte: 3:1 molar ratio of MgCl2 to MgTFSI2(0.5 M Mg2*)
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Deshielding of the Mg Resonance with Co-Anion

MgCl2 —Mg(TF3112/61
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Efficiency Increased Dramatically with Cl- Addition

Two different trajectories — different speciation?
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Common Electrochemical Response Across Solvents

CI:TFSI G1 (0.5 M Mg2+)
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Classical MD Applied to Explore Speciation

MD simulations indicate multimeric complexes with characteristic Mg-Mg distances
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Cluster Analysis Indicates Speciation Differences




NMR Trends are Consistent with MD Speciation
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Multidentate Ether Dominates the Interface
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Multimer p-Cl Systems Yield Defined Crystallography

Cl- facilitates Mg nucleation at noble metals

Textured (0001) to random (p-1000)
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Chloride vs. WCA-based Electrolytes

» General principle of operation: mitigate parasitic reductive decomposition to
avoid Mg?* blocking film formation

Strongly Coordinating Halide Weakly Coordinating Anion

chloride clustering

. ‘ solvent/anion competition
chloride-mediated
' ‘ desolvation ‘
‘ chloride protection

desolvation

‘ protection?
» Chloride regulates response « Solvent vs. anion competition
* Provides apparent protection regulates response

» Greater susceptibility to passivation
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Carbo-closo-dodecaborate is Mg Active

Does conductivity scale with expected extent of Mg2+--RCB11- dissociation?
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WCA Cathodic Efficiency is Governed by Impurities
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Impurities Likely Limit Mg(MORF,), Electrolytes
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Conclusions

Solvents of increasing complexation energy displace TFSI from Mg?*

Coulombic efficiency increases as contact ion paired TFSI is eliminated

Cl- anion more efficiently displaces TFSI and increases efficiency — but not
completely

THF (2MeTHF) and glymes exhibit different efficiency trajectories
Computation argues complex Mg-Cl speciation

* Multimer dominated for compact ethers
« Monomer dominated with increased polyether denticity/size
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