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Decoupling Electrolyte
Anion and Solvent
effects in Magnesium
Electrodeposition for
Rechargeable Batteries
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The Promise of Mg Batteries
• Mg metal anode + high voltage cathode =

transformative energy storage

• Significant growth in Mg electrolyte development
• Aimed at expanding the stability window

• Growing electrolyte toolkit provides opportunity for
systematic investigation
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Instability of the TFSI Anion

Efficiency is argued limited by
Mg2+-TFSI- reduction during
electron transfer

TFSI- Mg' TFSF TFSF

N. Rajput, J. Am. Chem. Soc.
2015, 137, 3411-3420
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CI-addition - a CIP anion -
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Mg2CI22+ and Mg3Cl42+ complexes are proposed as deposition species in Cl:TFSI
mixtures based recrystallized on solvates — unique wrt Mg2CI3+
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Outstanding Questions New Approach

Does unbound TFSI contribute significantly to inefficiency?

Can we draw more universal conclusions of TFSI's role in limiting efficiency?

What lessons from TFSI can be applied to WCA's

Our approach:

Explore impact of competitive solvent and anion
complexation on efficiency.

• Treat the ether — glyme solvent series as a
continuum of energy of complexation

• Treat contact ion pairing anions as displacive ligands
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Mg Coordination Environment is Dictated by Solvent
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Reduced lon Pairing is Reflected in 25Mg NMR
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Competitive Complexation is Expected

Comparing AG formation of Mg(solv)5TFSI and Mg(solv)6

1/4.

AG = 30 meV SSIP
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Speciation Impacts Electrolyte Cathodic Performance
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Reduced TFSI Decomposition with Displacement
lnterphase composition should yield less TFSI products with THF ""4 G2

Localized deposit — filmed substrate localized deposit — fibrous morphology
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Anion Displacement through Co Solvent Addition

Can a more strongly complexing solvent displace coordinated TFSI?

0 to 4 molar ratios of G2:MgTFSI2(THF), 4:1 only 0.14 XG2
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Anion Displacement through Co-Anion Addition

Co-anion electrolyte: 3:1 molar ratio of MgCl2 to MgTFSI2 (0.5 M Mg2±)

THF: CIP/AGG 69 — 22% G1: CIP 17 - 7%
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Deshielding of the 25Mg Resonance with Co-Anion
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Efficiency Increased Dramatically with Cl- Addition

Two different trajectories — different speciation?
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Common Electrochemical Response Across Solvents

Cl:TFSI G1 (0.5 M Mg2+) Cl:TFSI G2 (0.5 M Mg2±)
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Classical MD Applied to Explore Speciation

MD simulations indicate multimeric complexes with characteristic Mg-Mg distances
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Cluster Analysis Indicates Speciation Differences
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NMR Trends are Consistent with MD Speciation

20 mM MgCl2
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Multidentate Ether Dominates the Interface
by

Operando XAS 10-8 torr Si3N4 Pt electrolyte
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Multimer µ-CI Systems Yield Defined Crystallography
Cl- facilitates Mg nucleation at noble metals

Textured (0001) to random (p-1000)

Reduced surface faceting
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Chloride vs. WCA-based Electrolytes

• General principle of operation: mitigate parasitic reductive decomposition to
avoid Mg2+ blocking film formation

Strongly Coordinating Halide Weakly Coordinating Anion
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Carbo-closo-dodecaborate is Mg Active

Does conductivity scale with expected extent of Mg2±...RCB11- dissociation?
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WCA Cathodic Efficiency is Governed by Impurities
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Impurities Likely Limit Mg(MORF4)2 Electrolytes
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Conclusions

Solvents of increasing complexation energy displace TFSI from Mg2+

Coulombic efficiency increases as contact ion paired TFSI is eliminated

Cl- anion more efficiently displaces TFSI and increases efficiency — but not
completely

THF (2MeTHF) and glymes exhibit different efficiency trajectories

Computation argues complex Mg-CI speciation
• Multimer dominated for compact ethers
• Monomer dominated with increased polyether denticity/size
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