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2 Motivation for a better ground test method

• At IMAC in 2014, Daborn, Ind, Ewins and Roberts in the UK showed that
vibrations induced at 13 locations on a scale model missile in a wind tunnel could be
reproduced well with an approximate boundary condition and three modal shakers
with multi-input multi-output (MIMO) control.

• The technique was named Impedance-Matched Multi-Axis Testing (IMMAT).

• IMMAT matching of multiple field responses is a huge improvement over what can
be achieved with single axis shaker table.

• IMMAT power requirements are only a few percent of the single axis shaker power
requirements.
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3 Unanswered Multi-Shaker Testing Questions

• HOWEVER, we have not had technology to guide:

• How many shakers are required for a particular test?

• Where should the shakers be placed?

• Can the shakers or amplifiers physically achieve the environment, i.e. will the
test exceed the physical capabilities such as max output current / voltage /
force / displacement?

• This work was focused on attempting to answer these questions.



4 Approach to develop IMMAT test design

• Obtain a modal model of the test article with shapes at control dof and candidate
shaker attachment dof.

Obtain a shaker/amplifier model.

Use substructuring to couple desired shakers to test article model.

Use the model to calculate the output voltage required for each amplifier to
achieve the control accelerations.

• Check other quantities to see if they are acceptable:

• Shaker force

• Shaker displacement

• Amplifier output current

• Control error

• Optimize the model appropriately (here we minimize amplifier output voltage).



5 Proof of concept Hardware for IMMAT test design - MATV

• The project proposed to prove the IMMAT test design using research hardware
provided by AWE known as the Modal Analysis Test Vehicle (MATV) which
would be tested in a field random acoustic environment. Then a designed
IMMAT test would be run with multiple shakers to attempt to simulate the field
accelerations.

• MATV Description

• One meter long

• 47 kg

• Composite wrapped on aluminum
substrate cone

• Large end aluminum cover plate

• Aluminum internal flat component plate

• Bracket called the Removable Component
(RC) bolted to the internal component
plate

• Steel pipe bolted to the component plate

• Foam support between pipe and cone at
small end



6 Field Acoustic Test for MATV

• A field acoustic test was run to 147 dB at the Institute of Sound and Vibration
Research at Southampton University in a reverberant chamber with horn.

MATV suspended by bungees in corner
of chamber

Horn

69 total accelerometer channels recorded



7 I Shaker / Amplifier 4 dof Model

As Tony Moulder and I began investigations to characterize a BEAK 1000 amplifier
coupled with a LS-70 shaker, Phil Ind found a paper by Fox and Lang in the October 2001
Sound and Vibration magazine that modeled standard large laboratory shakers. With some
small modifications, the 4 dof model of the modal shaker is shown below.
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8 Calibrating Shaker / Amplifier 4 dof Model

• The model can be calibrated against a high impedance test —
M's were measured, R was published.

• '<ilex and Ksting calibrated to achieve frequency match.

• Magnetic field, Inductance and Cflex calibrated to achieve
amplitude match
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9  System Modeling and Control Equations

• Substructuring theory according to deKlerk, Rixen, Voormeeren primal method
beginning with uncoupled equations of motion of FE MATV model, a shaker/amplifier
model and a constraint equation.
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10 MATV Control Accel Locations

14 control accelerometer dof were chosen either on the RC or triaxial locations at
typical mounting locations for a component

1 Triax on Cone 2 Triax on Component Plate

RC — 5 dof
chosen on 4

Triaxes



11 Shaker Candidate Locations

34 candidate shaker locations were chosen to optimize to achieve an achievable
IMMAT test to match the target cross spectra.

Input normal to the cone, 5 axial stations, 0,15,30,45,75,90 degrees at each station

2 axial inputs at each end.

All were logistically feasible individually.
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12 1 Shaker Optimization to minimize sum of Amplifier Output Voltages

Optimize the best shaker to add to whatever is the existing set

Can minimize whatever quantity you like (force, voltage, current, control error, etc.)

Physical Limit is 85V

Here I choose to minimize the sum of Amplifier Output Voltages

First shaker

• Worst shaker 301Y- with 265 Volts

• Best shaker 601X+ with 37 Volts, dBerr = 18,

Second shaker

Best shaker 506Y- with [30 33 Volts], dBerr = 8.7

Fourth shaker

Best shaker 204Y- with [33 24 29 50 V, dBerr = 4.7

Sixth shaker (Blows Up!)

Best shaker 302Y- wi [1073 6456 12300 27200 10900 30900 dBerr = 3.1



13 Final Optimization Shaker Locations

• Logistics were better to put axial shaker on floor instead of hanging as 601X+ required.

• Final shakers were 501Y- 603X- 506Y- 206 Y-



IMMAT Test Results of LMS Control — Blue is Target, Red is Achieved
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15  Conclusions

• Excellent control produced from optimization of 4 shakers to minimize amplifier
voltage output

• Fewer shakers required than I thought would be needed

• More shakers are not always better

• We had enough voltage headroom to go to +3dB on target acceleration response PSDs



16 Bacicup Slide



17 Single Shaker / MATV Validation of Substructure Model

• To validate the combined shaker/amp + MATV model, AWE hooked
up one shaker as shown in the picture.

• After minor calibration adjustments, some of the FRF quantities from
the model and test are shown below. (Blue is measured and dashed red is
model)
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18  Predicted voltage error especially for most compliant shaker

• Final shaker were 501Y- 603X- 506Y- 206 Y-

• [26 34 25 [4 3 2 6 Amps] [102 102 52 102 N] 5.5 dBerr

• Actual voltage to run test was [31 22 2

• The BIG MISS was on 206Y- : On further examination, high frequency modes above
2000Hz had residual flexibility that added a lot of response in the actual system. We did

.
not include the high frequency modes above 2000 Hz. MORAL OF THE STORY —
INCLUDE HIGHER FREQUENCY MODES (maybe twice the bandwidth)

206Y accel/E FRF calculated from Model and Measured in Test
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