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Abstract

We present VideoSwarm, a system for visualizing video en-
sembles generated by numerical simulations. VideoSwarm is a
web application, where linked views of the ensemble each repre-
sent the data using a different level of abstraction. VideoSwarm
uses multidimensional scaling to reveal relationships between a
set of simulations relative to a single moment in time, and to
show the evolution of video similarities over a span of time.
VideoSwarm is a plug-in for Slycat, a web-based visualization
[framework which provides a web-server, database, and Python
infrastructure. The Slycat framework provides support for man-
aging multiple users, maintains access control, and requires only
a Slycat supported commodity browser (such as Firefox, Chrome,
or Safari).

Introduction

Scientists and engineers are increasingly interested in ana-
lyzing ensembles of results generated by numerical simulations
[22]. These ensembles are produced by varying parameters of the
model for different runs of the simulation. Ensemble analysis has
been used with climate data [28,30] and computational fluid dy-
namics models [13]. Ensembles can be used to understand the
uncertainty in model parameters [10], the behavior of the model
in relation to the physical system [35], and ultimately the proper-
ties of the physical system itself.

Often, however, ensembles can contain cumbersome
amounts of data. The simulations are usually three-dimensional
(requiring grid points at a suitable spatial resolution); they often
produce multivariate data (e.g. pressure, velocity, temperature,
etc.) at each grid point; and finally the size of this data is mul-
tiplied by the number of time steps. A single simulation run can
yield gigabytes to potentially terabytes of data. Further, large en-
sembles might contain thousands of simulations. Therefore, prac-
tical concerns often require the in situ! computation of features,
statistics, or location-based samples to analyze the results [22].
Sometimes storage constraints dictate that only the calculated fea-
tures can be retained after running the simulations.

In this paper, we use in situ produced videos rendered from
multiple viewpoints as the simulation features. Videos are com-
monly used to understand simulation results and have the added
advantage of being generic for any type of simulation. Videos
have a smaller storage requirement than full simulation results,
and may contain more information than summary statistics or
location-based samples.

Given a set of simulation videos, several questions arise:
How can we compare and contrast videos in our ensemble?
Where in time are the videos similar and where do they diverge?

'Running on the high performance computer (HPC) concurrently or in
lock step with the simulation.
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Do the videos cluster? Can we identify interesting behavior in
the videos and when it occurs? In other words, without actually
watching every video, how can we digest the full content of the
data? To answer these questions, we have developed a tool for
analyzing simulation video ensembles, called VideoSwarm.

VideoSwarm is a light-weight interface for interactive visu-
alization of simulation video data, including the ability to view
selected videos concurrently. VideoSwarm visualizes the video
ensemble with two linked representations, each providing a dif-
ferent abstraction of the video data. In the first, multidimensional
scaling [3] is used to provide a two-dimensional map of the rela-
tionships between the movies at a single user selected time within
the simulation. In the second, the preceding maps for individ-
ual time step are indexed by one-dimensional video trajectories,
which are also computed using multidimensional scaling. The
combined effect of these representations is that the maps give the
user a series of snapshots showing how the videos are related to
each other, while the trajectories give the user a sense of how the
videos progress over time and when interesting frames occur in
the videos. The maps and trajectories also function as control
mechanisms for selecting individual videos and time instances
within the videos for synchronized viewing.

VideoSwarm is implemented as a plugin for Slycat [6], a sys-
tem which provides a web server, a database, and a Python infras-
tructure for remote computation (on the web server). The Slycat
VideoSwarm plugin is a web application which provides the pre-
viously described video ensemble analysis capability. There is no
installation and the only requirement is the presence of a Slycat
supported browser (e.g. Firefox). In addition, VideoSwarm sup-
ports (via Slycat) managment of multiple users, multiple datasets,
and access control, therefore encouraging collaboration while
maintaining data privacy. Slycat and VideoSwarm are imple-
mented using HTMLS, JavaScript, and Python. Slycat is open
source (github.com/sandialabs/slycat). It is anticipated that an
open-source version of VideoSwarm will be released in the future
as part of Slycat.

In this paper, we describe VideoSwarm in detail. We discuss:
our motivation and design goals; related work; the algorithms we
use to represent the video ensembles; and the VideoSwarm user
interface. We demonstrate our system using a video ensemble
dataset obtained from a numerical simulation of a punch impact-
ing a metal plate.

Although we use specific algorithms in this paper, it is im-
portant to note that the user interface is completely decoupled
from the chosen algorithms. Alternative or new algorithms can
be easily substituted for the algorithms described.

Motivation and Design Goals
In our earlier work on Slycat, we developed approaches for
remotely retrieving and playing video ensemble data within the
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Parameter Space model [7]. Configurable axes within the Param-
eter Space scatterplot, interactive color-coding of runs by vari-
able values, and filtering features assisted with down selecting
the number of videos for examination. Synchronized playback
enabled direct comparisons between a handful of videos, which
could be corresponding videos from different runs, or videos ren-
dered from different viewpoints within the same run. Although
this functionality provided a starting point for analyzing video re-
sults, it lacks the ability to scale as the number of runs increases.

We realized that Slycat needed an analysis technique that
provides an understanding of video content at a higher level of ab-
straction. Akin to the way that text analysis provides an overview
for the content found in a set of documents, we want to represent
overviews of the content for a collection of videos. This led us
to develop the following set of tasks that a video analysis model
should facilitate:

(T1) Understand ensemble results without viewing all videos.

(T2) Cluster videos both in terms of frame similarity and in terms
of temporal evolution.

(T3) Correlate video clusters with simulation input parameter
values.

(T4) Evaluate sensitivity of video results to input parameters.

(T5) Find video outliers or videos demonstrating anomalous be-
havior over time.

(T6) Compare small sets of videos during playback.

We will use these demarcations (T1-T6) in the text that fol-
lows to show how we address these goals.

Related Work

Our work falls within the realm of ensemble visualization
[22], a field which overlaps with uncertainty visualization, com-
putational steering, and parameter space exploration.

The field of ensemble visualization is not entirely well-
defined. Obermaier et al. [21] state that “being able to identify
contributions of individual runs while at the same time providing
summary statistics is one of the key capabilities of ensemble vi-
sualization.” Some examples of ensemble visualization include
isocontour “spaghetti” plots to visualize weather data [30]; iso-
surfaces for visualizing ensembles of three-dimensional data [2];
means and variances of climate simulation quantities [27, 28];
contour box-plots [36]; topological approaches [23,24]; and com-
parative visual analysis of two-dimensional ensembles [26].

In contrast to ensemble visualization, uncertainty visual-
ization is concerned mainly with the statistical quality of the
ensemble data, and in particular how it is represented visually
[9,11,14,25]. Some examples of uncertainty visualization that are
related to ensemble visualization are two-dimensional vector field
glyphs that represent uncertainty in direction and magnitute [37],
flow behavior of vector fields [12], and parameter sensitivity [10].

Computational steering refers to user guided optimization.
For simulation ensembles, a feedback loop is implemented where
results are visualized and the user changes input parameters to
produce a desired outcome [15,20]. Computational steering with
ensembles has been used to good effect in tool design [5, 19].

Parameter space exploration is similar to computational
steering, but the visualization is outside the optimization, or the
optimization is absent [17,31]. Nevertheless, parameter space ex-
ploration generally focuses on identifying optimal parameters, or
regions of optimal parameters [18,29]. Parameter space explo-
ration has been used for both image analysis [29] and video anal-
ysis [4].

The main difference between our work and previous work is
that we are particularly interested in user interaction and relating
all abstractions directly to the original data. Like the methods de-
scribed in the field of ensemble visualization, we produce visual-
izations designed to abstract the entire ensemble while identifying
contributions of individual runs. However, our abstractions are
unlike previous work in that our visualizations are dynamic and
change as the user examines different time points in the ensemble.
Like parameter space exploration, we seek to identify interesting
simulation inputs. However, we are not seeking particular param-
eters or regimes, but are seeking a general understanding of the
data, such as the identification of clusters of similar videos and
correlations of clusters with metadata.

In terms of subject matter, our work most closely relates to
the parameter space exploration work of Bruckner and Moller [4],
though they worked with volumetric data, while we are limited to
making our comparisons based on image data. Although both
systems are evaluating the impact of parameter changes on video
sequences made by simulations, in situ workflows mean that we
never have access to the intermediate volume data. In terms of
algorithms, our trajectories are similar to the ensemble traces de-
scribed in the work by Singh et al. [32]. The main difference be-
tween our trajectories and the ensemble traces being that we com-
pute two-dimensional trajectories individually then align them,
while all coordinates are computed simultaneously for the three-
dimensional ensemble traces.

Algorithms

VideoSwarm provides an interactive user interface which or-
ganizes ensemble video data for easier comparison, contrast and
identification of interesting behavior. The interface is based on
two abstractions. The first abstraction provides a visualization of
the videos at a given time point using dimension reduction via
multidimensional scaling, and the second provides visualizations
of the videos as time series plots, which we call trajectories.

Although we describe the algorithms used to compute our
abstractions below, we again note that these particular algorithms
are not required. The computations in practice amount to pre-
processing steps which produce the data necessary to use the
VideoSwarm interface. Any of a number of different distance
matrices and/or algorithms could be easily substituted for those
chosen below.

Multidimensional Scaling

VideoSwarm uses classical multidimensional scaling (MDS)
[3] to provide a two-dimensional visualization of the videos in an
ensemble. This visualization is displayed in the main frame of
the VideoSwarm user interface, as shown in Figure 1(B). To be
precise, suppose we have a dataset {v;}, where v; is a video in
our ensemble. Since our videos originate from a numerical simu-
lation, we assume that they all have the same number of frames,
and that each frame is the same size. We then denote frame ¢ of
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Figure 1: VideoSwarm User Interface. Here we show VideoSwarm running in Firefox on a Windows desktop: (A) simulation video
data selected by the user for playback/examination; (B) MDS coordinates of the videos in the ensemble, where each point corresponds
to a particular video and the coordinates change when the user changes the time in the trajectories pane; (C) general controls allowing
selection of metadata, colormaps, and video playback options; (D) video trajectories showing the progress of each video over its lifetime;
(E) time selection controls allow the user to navigate the ensemble in time, with corresponding updates to the MDS coordinates and video
displays; and (F) metadata table showing information available for each video in the ensemble, including physical parameters relevant to

the analysis.

video v; as a vector f; = [fj;x], where fi is the kth pixel in the
frame. Note that for color images we will have 3 x m X n pixels
when an image is of size m X n.

For each time point, we compute a pairwise distance matrix

d(fy,f1;)  d(fi,f)

p, = |4 fir)  d(fo,fo) ’ (1

where d(f;,f j,) gives a distance between video i and video j at
frame ¢. For example using Euclidean distance we would have

d(fityfjt) = Z(fitk *fjtk)z- 2)

k

Other distances can be used, so that each distance metric can be
tailored to the videos under analysis.

Now we use the MDS algorithm to compute coordinates for
each distance matrix D;. Since the MDS algorithm works on any
distance matrix, we simplify notation by using D to represent D;.

The first step in MDS is to double center the distance matrix, ob-
taining

B= —%HDZH, 3)

where D? is the componentwise square of D, and H =1 — 117 /n,
n being the size of D. Next, we perform an eigenvalue decomposi-
tion of B, keeping only the two largest positive eigenvalues 41, A,
and corresponding eigenvectors ej,e;. The MDS coordinates are
given by the columns of EA!/2, where E is the matrix containing
the two eigenvectors e, e, and A is the diagonal matrix containing
the two eigvenvalues A;,A;. Resuming our use of the parameter
t, we denote by E; the two-column matrix containing the MDS
coordinates for time ¢.

After MDS, we have two-dimensional coordinates represent-
ing the video ensemble for each time point. Watching these repre-
sentations over time allows the VideoSwarm user to see how the
videos are related, and how they associate and disassociate as the
simulation progresses. However, it is important to note that the
eigenvectors computed by MDS are unique only up to sign. This
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Figure 2: Time Control. The VideoSwarm time control is a triangular slider that moves horizontally above the video trajectories. The
time control is connected to a vertical line which intersects the trajectories at the current selected time. As the user drags the time control,
the MDS coordinates representing the video ensemble at the selected time are updated, showing in real-time changes in the relationships
between videos in the ensemble. In this figure we show (A) the time control just past the beginning of the videos in the ensemble, (B)
near the midpoint of the videos in the ensemble, and (C) towards the end of the videos .

fact can manifest itself as disconcerting directional flips in the co-
ordinates given even small changes in time by the analyst. To
minimize these flips, we use the Kabsch algorithm [16] to com-
pute an optimal transformation so that as we advance in time, each
set of coordinates are as closely aligned to the coordinates from
the next time step as possible.

The Kabsch algorithm uses the Singular Value Decomposi-
tion (SVD) to compute an optimal orthogonal transformation (ro-
tations and reflections). If we assume that matrices P and Q have
columns containing the consecutive time step MDS coordinates,
then we form A = PTQ and use the SVD to obtain A = ULVT.
The transformation matrix is given by

T=vUT. 4)

We note a few important subtleties here. First, the Kabsch
algorithm in it’s entirety does not allow for reflections, only ro-
tations. We do not implement this restriction and allow reflec-
tions as well as rotations. Second, we have found that restricting
ourselves to two MDS dimensions prior to the coordinate align-
ment by the Kabsch algorithm can result in jumpy transitions be-
tween frames. For this reason, we allow the user to specify how
many dimensions to keep for the frame alignment. This results
in smoother from alignment when, for example, the MDS eigen-
values are similar in magnitude. After the frames are all aligned,

projection back down to two dimensions is performed for the fi-
nal visualization. Finally, we perform the frame alignment going
backwards in time starting with the last frame, since the initial
frame is typically identical for numerical simulations.

Trajectories

To efficiently index the two-dimensional MDS coordinate
maps generated in the previous section, we also calculate time
series trajectories for each video in the ensemble. These trajec-
tories are displayed using the first of the two MDS coordinates
described in the previous section. The trajectories are plotted be-
low the main frame in the VideoSwarm interface, as shown in
Figure 1(D).

Recall we used E; to denote the two-column matrix contain-
ing the Kabsch corrected MDS coordinates for the video ensemble
at time ¢. If we write E; = [xj,yi], where (x;,yi;) gives the (x,y)
coordinates of video i at time #, then our trajectories are given by
zi(t) = xjr, plotted as a traditional time series.

Computational Costs

VideoSwarm depends on computing a sequence of pairwise
distance matrices and a corresponding sequence of MDS coordi-
nates. A single distance matrix calculation is O(n?m) when n is
the number of videos and m is the number of pixels in a video
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Figure 3: Coloring by Metadata. VideoSwarm allows the user to color both points in the MDS scatter plot and the video trajectories
using metadata imported with the ensemble. On the left (A), we show our ensemble colored by punch/plate friction; in the middle (B),
it is colored by plate density; and on the right (C), by punch velocity. From the colorings, it is clear that punch velocity is driving the

formation of the clusters in the ensemble.

frame. We must compute the matrix for every frame, which is
therefore O(n?mf) when f is the number of frames.

For each distance matrix, we then compute MDS coordi-
nates using that distance matrix. The computational complex-
ity of MDS is O(n?), so the cost of computing the sequence of
MDS coordinates is O(n3f). In addition, it is worth noting that
for large video ensembles (large n), there are faster methods for
computing MDS. These methods vary in terms of speedup over
classical MDS, as well as accuracy [1,8,38]. It is also worth not-
ing that both the distance matrix and MDS coordinate calculations
are embarassingly parallel in terms of the video frames.

In our experiments, we examined four datasets using
VideoSwarm (one of which is described in this paper). The pro-
cessing time using a single thread on a laptop varied between five
minutes and 8 hours. Our first dataset had a small number of short,
low-resolution videos (256 videos, 50 frames per video, and 400
x 800 pixels per frame), and took approximately five minute to
process. Our second dataset had numerous short, low-resolution
videos (1441 videos, 90 frames per video, and 440 x 304 pixels
per frame), and took approximately 20 minutes to process. Our
third dataset had a small number of short, high-resolution videos
(200 videos, 96 frames per video, and 1920 x 1080 pixels per
frame), and took approximately one hour to process. Our final
dataset (used as our example in this paper), had a moderate num-
ber of long, high-resolution videos (250 videos, 1001 frames per

video, and 1024 x 768 pixels per frame), and took 8 hours. None
of the datasets were processed using high performance/parallel
computers.

User Interface

The VideoSwarm user interface provides interactive ac-
cess to the analysis techniques described in the Algorithms sec-
tion. Both the MDS coordinates and video trajectories are pre-
computed for maximum flexiblitiy in terms of video ensemble
distance metrics, dimension reduction algorithms, and calculation
of trajectories. Pre-computing the MDS and trajectory representa-
tions of the ensemble also ensures that VideoSwarm will provide
real-time interactive exploration for ensembles.

The VideoSwarm interface consists of several panes, all of
which are interactive and linked. The panes allow browsing the
MDS projection, the trajectories, and the metadata, as well as
viewing the videos themselves. The interface is shown in Fig-
ure 1.

The VideoSwarm interface is designed to help an analyst in-
teractively investigate a video ensemble. The linked panes are
used to display different levels of generality. The trajectories pro-
vide the level of greatest generality, displaying the ensemble as a
whole over its entire play time in one two-dimensional plot. The
MDS scatter plot provides a lower level of generality, showing
how the videos are related on a frame by frame basis. Finally, the
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Figure 4: Synchronized Video Playback. Videos selected using the MDS scatterplot or the time series trajectories are shown in the video
pane for viewing. These videos can be played independently or synchronized with the VideoSwarm time control. In this figure, we show
synchronized playback of the videos selected from the red, white, and blue clusters (arranged in the video pane from top to bottom). We

show the videos near their start (A); the videos at 12 seconds (B); at 24 seconds (C); and the videos near their end (D).

video pane and the metadata table allow the user to examine the
actual simulation inputs/outputs and corresponding videos. All
panes are linked by time.

The user can select an arbitrary number of videos and the
video pane can be resized to show a larger number of small videos
or a smaller number of large videos. If too many videos are se-
lected to display at once, the user can scroll the video pane. In
addition, videos can be played full screen if desired.

VideoSwarm is written in HTMLS and JavaScript using
jQuery for the controls. The trajectories and MDS plots are ren-
dered and animated using D3 and canvas, and the metadata table
uses SlickGrid, an open source JavaScript component.

Example

We demonstrate the operation of VideoSwarm using an en-
semble generated with Sierra/SolidMechanics (Sierra/SM) [33], a
Lagrangian, three-dimensional code for problems with large de-
formations and nonlinear material behaviors. This ensemble was
created to explore the effects of changes in simulation parameters
on material fracturing. The modeled object is a punch impacting
a metal plate under various conditions, such as different punch
velocities, material properties, or plate thicknesses. For each run,
the ensemble consists of 8 inputs and 38 outputs (12 scalar re-

sults, 6 event-triggered images, 16 variables changing over time,
and 4 videos). The full ensemble is 15K runs, with about a ter-
abyte of data (including a total of 90K images and 60K videos).
We have randomly sampled that ensemble to create a smaller en-
semble of 250 runs with videos created from three different view-
points. Each video has a resolution of 1024 x 768, and is 40
seconds long with 1000 frames.

As mentioned in the User Interface section, and shown in
Figure 1(B), VideoSwarm provides a central pane containing a
scatter plot populated with the two-dimensional MDS coordi-
nates. Each point in the scatter plot represents a particular video
at a particular time. The relative positions of the points show how
the videos are related at that time.

Below the scatter plot is a pane showing the video trajecto-
ries, seen in Figure 1(D). Each video trajectory is a standard time
series plot. Like the points in the MDS scatter plot, a single time
series plot represents a single video. Unlike the points in the scat-
ter plot, a time series plot represents a video in its entirety (over
its full time span).

Within the trajectories pane there is a triangular control con-
nected to a vertical line indicating the current time in the ensem-
ble. This is the time control shown in Figure 1(E). The time
control is connected to the central MDS scatter plot so that drag-
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Figure 5: Anomalous Runs. Here we compare two anomalous runs with a run in the main cluster. We show videos (A) generated from a
bottom side view; (B) from the side; and (C) of the plate only (punch not drawn) from a top side view. In all cases, the anomalous runs
have lower stress in the plate (they are less red).

ging the time control updates the positions of the points in the
MDS scatter plot corresponding to the changes in similarity of
the videos at the current time.

Using the time control the user can see how the ensemble
changes forwards and backwards in time. This enables the user
to accomplish the clustering task (T2). Clusters are observed to
form, merge, and re-coalese by manipulating the time control, as
shown in Figure 2. The name VideoSwarm was inspired by the
swarm-like behavior that the MDS scatter plot points exhibit as

(c) Plate Top Side View

the time control is moved.

Metadata coloring plays a central role in the MDS and trajec-
tory panes, and is used to support design tasks (T3) and (T4): ex-
amining correlations between video clusters and simulation meta-
data. Metadata coloring allows the user to select any column in
the metadata table in Figure 1(F) and use the the corresponding
value to color both the MDS representations and the video trajec-
tories. Different metadata colorings are shown in Figure 3.

In the punch-plate example, the metadata coloring can be
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Figure 6: Different Video Views. Our video ensemble data included three different viewpoints of the simulation. We show videos (A)
generated from a bottom side view; (B) from the side; and (C) of the plate only (punch not drawn) from a top side view. In all cases,
clusters are evident early in the simulation, merging into larger clusters as the simulation progresses.

used to correlate the five clusters with the initial velocity of the
punch, as shown in Figure 3. (Note that in this example, the color
bar used for the metadata happens to be similar to the coloring
scheme in the videos, even though there is in fact no relation.)

The MDS scatter plot, video trajectories, time control, and
metadata coloring provides the user with an intuitive understand-
ing of the video ensemble as a whole. The complementary per-
spectives of these views along with the linked interactions com-
bine to facilitate our design objective (T1). When a more detailed

analysis is desired, the user can select individual videos for com-
parison using the video viewer. Videos are selected from either
points in the MDS scatter plot or video trajectories. Once videos
are selected they are shown in the video panel and can be synchro-
nized with the time control or played individually, as described in
task (T6). Synchronized videos are shown playing in Figure 4.

In Figure 4 we show representative videos from the three
clusters (red, white, and blue). Examining frames from each video
over time we can see why the clusters exist and why velocity is



a driving factor in the formation of the clusters. Namely that a
punch with a slow initial velocity (red cluster) fails to puncture
the material, while faster initial velocities (white and blue) punc-
ture the material at different rates. Further, any punch which fully
punctures the material ends up in the same state at the end of the
video, which is why the video clusters with higher punch veloci-
ties merge towards the end of the simulation.

Individual runs can be selected by clicking on points in the
scatterplot, lines in the trajectory plot, or rows in the table. Groups
of runs can be selected using control-click to add to an existing se-
lection, or a rectangular rubberbanding operation can be used to
select groups of colocated points. Selected runs are highlighted
in the scatterplot, the trajectory plot and the table by enlarging
points, intensifying lines, and darkening the row colorations, re-
spectively. In the lower right corner of each video is the ID num-
ber of the run with an arrow pointing to a grid icon. Clicking the
grid icon causes the scatterplot point to enlarge and flash, the tra-
jectory line to be briefly drawn in isolation, and the table row to
be scrolled to the top of the table and to flash.

Figure 5 is an example of using VideoSwarm to detect and
investigate anomalies (T5). There are two runs colored in orange
that appear at some distance from the rest of the cluster, both in
the scatterplot and in the trajectory plot. This is true for all three
videos. We select those two videos and another run that is part of
the main cluster, but is the most distant from the two anomalous
runs (so as to maximize the differences between the videos). Ex-
amining the videos, we can determine that for the two anomalous
runs the stresses in the plate are much lower than for the other
runs with that same initial velocity (the plate is colored by Von
Mises stress, with red representing the highest stress values).

As a final remark, we note that we have three video ensem-
bles, all generated from the same simulation data. The videos
were taken from different view points, so generated different
MBDS scatter plots and trajectories. The three different ensembles
are shown in Figure 6. In any case, the clusters in our ensemble
corresponding to punch velocity were evident in all three different
videos viewpoints we used.

Discussion

VideoSwarm is designed to assist scientists and engineers in
understanding numerical simulations using ensembles of videos.
Advantages to this approach include space savings, information
beyond summary statistics, and multiple perspective analysis.
However, there are disadvantages too, namely choice of variable
used in the construction of the video, color mapping of the vari-
able in the video rendering, and choice of perspective(s) used.
Since we can’t store all the results from every simulation, these
choice have to be made even before the simulations are run, and
there will always be tradeoffs involved.

Fortunately, at least one of these choices can be mitigated
by the use of floating point images instead of traditional RGB im-
ages. To be more precise, we note that since we vectorize the RGB
image values, it is critical that the color mapping used in the orig-
inal rendering of the videos be fixed not only for the duration of
the simulation, but between simulations. This is necessary to en-
sure that the values being compared are not shifting and that they
encode the same meaning in terms of the simulation variable val-
ues. We are aware that this latter constraint will pose problems for
simulations where variables have a broad dynamic range. Conse-

quently, our future work will be to shift from RGB-valued pixels
to floating point valued images.

Although VideoSwarm is designed specifically for numer-
ical simulations, another inherent limitation in our approach is
the strict adherence to time alignment. In fact, VideoSwarm is
intended to be used for analyzing video data where the timing
of events is as important as the event itself. Therefore, frames
with identical characteristics that occur earlier or later in other
simulations are regarded as being different. A different analy-
sis technique would be required to identify shared features that
are shifted in time. Additionally, because VideoSwarm does a
frame-by-frame comparison, it is limited to analyzing only video
ensembles containing matching numbers of frames in each video.

Finally, in our punch-plate example, the videos separated
into five distinct clusters using MDS. In our other three exam-
ples (not shown), we did not observe such distinct, well-separated
clusters. Instead, we saw one large group, often with distinct ge-
ometric patterns. However, by using metadata coloring, we were
able to understand the major underlying features of the ensemble
in each case. This is not an automatic approach, and depends on
the metadata provided, so it might not always work, just as we
won’t always observe clusters. Thus additional future work might
examine the discovery of optimal correlations between the MDS
visualizations and the metadata provided.

Conclusion

Interactive visualization of ensemble data is a challenging
problem. In addition to organizing huge quantities of data for
display, there are many potential algorithms available for analysis.
We have designed a web application to help solve these problems
in the case of video ensemble data.

Our tool, VideoSwarm, uses a scatter plot and trajectories to
abstract a video ensemble to provide an intuitive understanding of
all the videos simultaneously. Although we use MDS to provide
the coordinates for the scatter plot and the time series trajectory
plots, other algorithms can be easily substituted. Possibilities in-
clude alternative distance metrics, alternative dimension reduction
algorithms, and alternative time series type traces for a video.

Given our representation of the ensemble using the MDS
scatter plot and video trajectories, VideoSwarm provides a subject
matter expert with a lightweight, no-installation, browser-based
interface for examining the data. VideoSwarm implements a real-
time control of the MDS scatter plot as well as an interactive in-
terface for video playback and metadata examination.

Instead of making the analyst an evaluator of the data min-
ing results, VideoSwarm provides an easy to use interface which
encourages the analyst to explore the data independently. Fur-
ther, since VideoSwarm is implemented as a Slycat plugin, man-
agement of multiple datasets, multiple users, and access control
is provided, encouraging collaboration between multiple analysts
while maintaining data privacy.
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